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ABSTRACT

This paper presents a model for calculating turbulent mix-
ing and mass transport in high Schmidt number flows based
on a Direct Numerical Simulation of the flow field and a so-
lution of the filtered transport equation of the scalar field.
‘We call this approach SEMI-DNS. It is shown that, in this
strategy, the only term that needs to be modelled is the cross
stress term C; = u;c’, which eases modelling of the unresolved
scales of the scalar field considerably. An a-priori analysis of
the DNS data of turbulent channel flow at Re; = 180 and
Sc = 3 and Sc = 10 shows that this term is small. Because of
the quasi linearity of the scalar transport equation, the ADM
model is applied for this term, and SEMI-DNS calculations
are performed up to Sc¢ = 1000. Comparisons with full DNS
results up to Sc = 10 and global quantities from the literature
up to Sc = 1000 show excellent agreement.

INTRODUCTION

In recent years, Direct Numerical Simulation (DNS) of low
Reynolds number flows became readily available to the CFD
community, providing reference data and insight for turbulent
flow problems. A counter example is turbulent mixing at high
Schmidt numbers. In that case, where the diffusion of the
scalar quantity is much smaller than the molecular momen-
tum exchange, the length scales of the scalar field are, due
to permanent folding and straining motion of the smallest ed-
dies, much shorter than the smallest length scales in the fluid.
Batchelor (1959) derived a scaling law for the length scale as:
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where ng is the Kolmogorov scale and Sc the Schmidt num-
ber. For realistic fluids Sc can take a wide range of values,
from Sc = 1 for pollutant in air to Sc = 2000 for a tracer in wa-
ter. In the case for very high Sc Direct-Numerical-Simulation
(DNS) becomes cumbersome if not impossible, as the required
grid resolution scales with Sc3/2,

The standard solution for this is to perform a Large-Eddy
Simulation (LES) for the mixing process, in which not all rele-
vant length scales are resolved. When a spatial filter operation
is applied on the scalar transport equation, we obtain the time
evolution of the filtered concentration field ¢ as
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Here c is the concentration of species, u; the velocities in
cartesian coordinates and v the kinematic viscosity. Here we
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are confronted with the convective term leading to an unclosed
equation as the term % ¢ can not be computed exactly with
the available filtered quantities ; and ¢. So equation (2) is
written as
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The sub grid scale mass flux M is defined as

M; = u;¢ — u;c

(4)

The standard approach is to relate the sub grid scale mass
fluxes to the mean scalar gradient in analogy to the eddy vis-
cosity models, which implies that the turbulent mass flux is
aligned with the filtered scalar gradient and that it is related
directly to the eddy viscosity. Additional mixing is produced
by, in the terms of the filter width, non-resolved eddies. Con-
sequently the microscale mixing taking place at scales smaller
than the Kolmogorov scale is not taken into account at all. If
the flow field is calculated by DNS and only the scalar field
is under resolved as a high Sc-number is regarded, this ap-
proach fails. First the turbulent viscosity is not available.
Second, there are no non-resolved eddies which could account
for additional mixing.

In this paper, we present a model for the calculation of
scalar fields for high Sc numbers in combination with DNS of
the flow field, thus enabling to produce accurate results for a
wide range of Sc. Because of the combination of DNS for the
flow field and modelling of the scalar transport equation, we
speak of a SEMI-Direct Numerical Simulation (SEMI-DNS).
We first present the basic definitions for SEMI-DNS, propose
a model for the unclosed scalar transport equation and un-
dertake a-priori analysis of DNS data for turbulent mixing in
channel flow at Rer = 180 and up to Sc = 10. Finally we
apply the developed ideas to a SEMI-DNS of the turbulent
channel flow up to Sc = 1000 and compare the results with
DNS data and global quantities from the literature.

SEMI DIRECT APPROACH

When increasing the Sc number, the Batchelor scale gets
much smaller than the Kolmogorov scale (equation 1), leading
to sheet like structures within the smallest eddies. By resolv-
ing the flow field till the Kolmogorov scale, and applying a
filter with a filter width of the same order as nx we can as-
sume that the quantities of the flow field, namely the velocities
u; and the pressure p are not altered by the filter operation:

ui(z) = G*xu;(x) =

/G’(x — 2’ Ay (2 dx' (5)



p(z) = G *p(z) = /G(w —a'; D)p(a’)da’ (6)
In this case, when A ~ ng, we note that u; = u; and u; =
0. According to Leonard (1974) we decompose the convective
term in equation (4) in filtered and sub-filtered part and by
applying the definition (5) only the following terms remain

(7)

We call L; = u;¢— u;¢ the Leonard term and C; = u;c’ the
cross stress term!. Inserting this into equation (3) we get

i = U;C — U;C + uic’
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In this equation the cross stress term has to be modelled.
It is revealing to look at the triad interaction in Fourier space
of the term u;ec:
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where k is the wavenumber vector and ;(k,t) and é(k, t)
are the Fourier coefficients of the specific wavenumber. Speak-
ing of our SEMI-DNS, we are only interested in the time evolu-
tion of the filtered concentration field and therefore only in an
interaction of the convective term which produces wavenum-
ber smaller than |k,| = 27/nk. As the wavenumber for the
velocity k' are by definition (5) always smaller than |l;7,\, the
only unknown term in equation (7) which contributes to the
wavenumber range in question is the cross stress C; with
|kn| < |K"| < 2|kn|. Wavenumbers of the scalar-spectrum
larger than 2|En\ have no contribution to the time evolution
of scalar modes with |§”| < |En|, independent of Sc. The mod-
elling is therefore reduced to the scales between nx and ng /2,
as we compute a DNS of the flow field and an LES of the scalar
field. The cross stress C; which influences the time evolution
of the filtered concentration field is confined to a small band
of physical scales, therefor we expect it to be small. For a
constant velocity within the filter width the cross stress would
even be equal to zero, as the velocity could be moved out
from the filter operation. As this is a quasi-linear problem we
apply the Approximate Deconvolution Model (ADM) as pro-
posed by Stolz and Adams (1999) and modified by Mathew
et al. (2003) for modelling M;, as it is basically a plain filter
operation.

MODELLING
As in a classical LES, the ADM approach we apply here is
based on filtering the quantities with a spatial filter:
o(x) = /G(m — 2’ N)e(x')dx' (10)
The sub grid scale mass flux is calculated by constructing
an approximate ¢ to the full and unfiltered concentration field
c. So equation (4) can be rewritten as

Mi :uié—uié . (11)

Lthis decomposition is the same to the Leonard decomposition
of the SGS-term in LES, the quantities here are vectors instead
of tensors. The Residual stress term R; = u/c’ = 0 and the cross

stress E = 0 due to the definition of the SEMI-DNS

824

With the definition of the SEMI-DNS, the velocities need
no special treatment, as they are calculated exactly with the
used resolution and filter width. ¢ is constructed by inverting
the filter operation (10). Meaningful filters are not invertible,
so an approximate deconvolution is defined by truncating the
series expansion of the inverse operation @ at a certain N

N
Qv=Y (-6, (12)

v=0

where I is the identity operation. This defines the approx-
imately de-convolved quantity:
which is also a filter operation, with ¢ = &+ ¢” where ¢”
is the sub filter fluctuation. Domaradzki and Adams (2002)
note that in LES calculations of turbulent flows, the ADM for
the sub grid scale tensor 7;; would only model the account of
7;; which can be expressed on the LES grid. For this reason
an additional filter step was introduced which stands for the
dissipation to the sub grid-scales which are smaller than the
Nyquist-criteria of the grid, the so called regularisation term.
However, their LES simulations were reported to be quite in-
sensitive to this parameter (Stolz and Adams 1999, Stolz et
al. 2001 and Domaradzki and Adams 2002). This method
was reviewed by Mathew et al. (2003). He showed that the
effect of deconvolution and regularisation are equal to one sin-
gle explicit filtering step. When inserting equation (11) with
the definition (13) and (5) in equation (3) we obtain
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Equation (14) can be integrated in time numerically and the
filtering and de-filtering step is applied subsequently. Thus,
first the quantity ™) at the time level N is de-convolved
with Qn to get ¢™). With it N+ at the new time level
is calculated by numerical integration, followed by a filtering
step with G to finally get N+ | In this procedure filtering is
directly followed by de-filtering in consecutive time steps and
thus the single filtering operation with the filter Q xG can be
applied on the concentration field after each time step. So
we can rewrite equation (14) for the time evolution of filtered
scalar fields, with the filter Q y * G, and the definition (5) as
Ou;é v 9%é ~
8:1,‘] = ga—ﬁ — ajujc . (15)
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The last term on the right hand side of equation (15) repre-
sents the cross term arising from the sub filter fluctuations.
This term cannot be represented by deconvolution and is the
reason for introducing the regularisation term. As Mathew
et al. (2003) showed that the regularisation term is similar
to apply an additional explicit filtering every time step, reg-
ularisation and ADM can be achieved by applying one filter
with a specific transfer function. As a consequence, this means
that the ADM model applied to the filtered scalar transport
equation consist of removing the high wavenumber content of
c thus setting the cross stress term C; = u;c” to zero. Conse-
quently, the performance of the model will be good when this
term is small.



NUMERICAL METHOD

Flow Solver

For the following computations of the flow field, the code
MGLET is used (Manhart and Friedrich 2002, Manhart 2004).
The incompressible Navier-Stokes equations, namely the con-
servation of mass and momentum, are solved in Finite Vol-
ume (FV) formulation on a Cartesian grid, using a staggered
variable arrangement. The discretisation in space of the trans-
ported and transporting quantities at the cell faces is fourth or-
der accurate (Kobayashi, 1999) and for the integration in time
a third order Runge-Kutta method is used. The incompress-
ibility constraint is satisfied by solving the Poission-equation
for the pressure with an Incomplete Lower-Upper (ILU) de-
composition and applying a correction step for the velocities
and the pressure which is second order accurate.

Discrete Filter

For the scalar field a filter with a specific transfer function
QNG is applied successively for each spatial direction. As
the computations are carried out for fully developed turbulent
channel flow, two different filters are required. One for the
periodic directions and one for the non-equidistant wall normal
direction. For the wall normal direction, we follow Stolz and
Adams (1999) and use a five point stencil to define an explicit
filter G in physical space. By applying equation (12) with v =
6 we get the filter Q G, which is shown in figure (1). For the
periodic directions a spectral filter is used. The scalar field is
transformed into wavenumber space, where each wavenumber
is multiplied by the amplification factor which stems from the
desired transfer function. The transfer function is constructed
according to Lele (1992) to match the shape of the transfer
function of the explicit wall-normal filter Q yG, and is also
depicted in figure(1).
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Figure 1: Transfer functions of the explicit primary filter G, the
approximate inverse @ n, the resulting filter G * Q n and spectral
filter (Lele, 1992) applied in homogeneous directions.

RESULTS

For validation, mass transfer calculations were carried out
in a fully developed turbulent channel flow at Re, = 180, built
with the friction velocity w-, the half channel height h and the
kinematic viscosity v. Three different Sc numbers of 1, 3 and
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Table 1: Information on grid and statistics of the DNS calcu-
lations

grid A grid B grid C
resolution 128x80x128  256x160x256  388x240x388
Azt 9.05 4.525 3.013
Ayt 7.24 3.62 2.41
Azt 1.35 - 4.98 0.67 - 2.49 0.44 - 1.63
DNS at SC 1 3 10
sample t 10380 3690 1470
nr. of samples 1500 800 640

10 were computed by a full DNS. The channel flow is periodic
in the stream- and span-wise direction, hereafter referred as
2- and y-direction. At the walls, there is a no-slip boundary
condition for the velocities, whereas the scalar was added at
the lower wall and removed at the upper wall by keeping the
concentration constant at c¢(z,y,0) = 1.0 and c(z,y,2h) =
—1.0. Compared to other simulations of the turbulent channel
flow (Kim et. al. 1987, Kasagi and lida 1999, Na and Hanratty
2000) the domain size was reduced to (27h,wh,2h) in order
to keep the computational effort feasible for the DNS of the
scalar field at Sc = 10. The resolutions (B) and (C) are scaled
with ~ v/Sc compared to grid (A), for further details see table
(1) Computations were also carried out with Sc = 1.0 on grid
(B) to study the grid dependence. The calculations for the
SEMI-DNS at Sc¢ = 3,10, 100 and 1000 were all carried out on
grid (A).

All variables are made dimensionless with the friction ve-
locity ur = (7w /p)!/2, the inner coordinate z+ = z - u, /v as
well as the mass flux at the wall ¢, = v/(Sc ur) - (9¢/9z).

Validation of the DNS computations
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Figure 2: Comparison of velocity rms-values of the DNS calcu-
lations with reference data from Kim et. al. (1987).

Figure (2) shows the rms-values of the velocity for grid
(A), (B) and (C) and the reference data of Kim et al. (1987).
The agreement of the data is very good, although there is a
slight overshoot of the uyms values at z+ = 15 on grid (A).
This overshoot reduces as the resolution is increased, and the
results of grid (B) and (C) are almost indiscernible and agree
very well with the data of Kim et al. (1987).
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Figure 3: Stream-wise energy spectrum of the u-velocity at z
100 at different resolutions; normalised by Kolmogorov scales.

+:

100
E(k)
nuy
1
0.01
0.0001
1606 \
gridA — \
gridB —-— Voo
1e-08 grid C - i \
0.01 0.1 1

kn

Figure 4: Span-wise energy spectrum of the u-velocity at z+ =
100 at different resolutions; normalised by Kolmogorov scales.

The span-wise and stream-wise spectra (figure 3 and 4)
show almost no inertial range, which is due to the low
Reynolds-number. There is a smooth transition to the dis-
sipation range and the spectra lie on top of each other for
the different resolutions, which shows the convergence of the
solution on grid (A). In the spectra in x-direction we see a
damping appearing at approximately Kmaqz/2, which is due to
the numerical scheme. However, as the energy decays for four
magnitudes before this damping appears and as in this flow
configuration the scales responsible for the bulk of dissipation
are considerably larger than the Kolmogorov length scale, we
regard the resolution of grid (A) still as adequate. To validate
our DNS results of the scalar field, we computed the scalar
field at Sc = 1 also on grid (B). The rms of the concentration
on grid (A) and (B) at Sc =1 show a negligible underestima-
tion of the scalar fluctuation in the channel centre at grid (A).
Therefore, we consider the solution of Sc =1 as converged on
grid (A).

A-priori analysis of SEMI-Direct Simulation
The results of the DNS-Simulations at S¢ = 3 and Sc = 10
were used to analyse a-priori the performance of the model
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idea. As mentioned before, the magnitude of the term 1;—1;’/’&
determines the model performance. In our case, grid (A) is
adequate to represent all relevant length scales of the flow field.
So we can calculate the term wu;¢’ for Sc = 3 and S¢ = 10 on
grid (A):

Ci = usd’ = wie — ;e (16)
By setting the cut off wavenumber of the filter A to k. =
ALz,; where Ax; is the grid spacing in x— and respectively y—
direction of grid (A), we can calculate all the cross stresses
which can not be represented on grid (A). We applied a sharp
spectral filter in the homogeneous z— and y— direction on
one instantaneous flow- and scalar-field of the DNS data of
the channel flow at Sc = 3 and Sc = 10 with the cut-off
wavenumber k.. Although this is in the range of 9 to 10 times
the Kolmogorov length scale of the channel flow, it is still
acceptable considering the presented spectra. The rms value
of the cross stress C; was normalised with the rms of ujc:

g\ 1/2
<uic” >
12
(%)

where () denotes the average over the homogeneous directions
and the upper and lower channel half.

€ =

(17)
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Figure 5: A-priori estimation of the model error € on grid (A),
from DNS at Sc = 3 grid (B) and DNS Sc¢ = 10 on grid (C).

As figure (5) shows, € is at 2% at Sc = 3 and at 4 — 6%
at Sc = 10 for ;\07, as well as lower than 1% at Sc = 3 and
between 1.5 and 0.5% at Sc = 10 for uc”. It has a peak close
to the wall, increasing with increasing Sc. For uc” the cross
stress in the centre of the channel doesn’t change with Sc,
in the case for wc’” it is almost doubled. This is due to the
reduction of the wall normal mass flux we with increasing Se.
For the considered Sc the cross stress term is small, and as
such the ADM model is expected to work well.

SEMI-DNS SIMULATIONS

In figure (6) the mean concentration profiles (c¢) of DNS
and the SEMI-DNS are compared for different Sc. The mean
concentration profiles show no deviation between DNS and
SEMI-DNS calculation. In the viscous sub layer all curves
follow the linear law of the wall <c+> = Sc-zt. The con-
centration fluctuations depicted in figure (7) show also a very
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Figure 6: Mean concentration profiles in semi logarithmic co-
ordinates, linear law of the wall <c+> = Sczt.
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Figure 7: rms of the concentration at different Sc.

good agreement. The differences in the fluctuations increase
with higher Sc and to the centre of the channel, because there
is more fluctuation energy in higher wavenumbers at higher
Se, so the effect of the filtering has more impact on the fluctu-
ations. At Sc = 1 there is no difference between the DNS and
SEMI-DNS simulation, as the the Kolmogorov length scale
is equal to the Batchelor length scale, and both are properly
resolved on grid (A).

The turbulent mass fluxes (u’c’) and (w’c’) (figure 8 and
9) also show an excellent agreement. In accordance to the
a-priori analysis, the error in (u/c’) is smaller than in (w’c’),
although for (w’c’) the statistics for the DNS at Sc = 10 are
not yet fully converged. At Sc = 10 the Batchelor scale is
approximately 3 times smaller than the Kolmogorov length
scale which implies that the scale separation is small. To see
if the model is capable to predict very high Schmidt number
mixing, calculations with Sc¢ = 100 and Sc = 1000 were done
on grid (A). The only way to validate those results was to
compare the dimensionless mass transfer coefficients with the
values at 600 < Sc < 39300 provided by Shaw and Hanratty
(1977) for turbulent pipe flow. In figure (10) the results of
the SEMI-DNS, the empirical curves by Shaw and Hanratty
(1977) and the numerical results of Na et al. (1999) are shown.
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Figure 8: Turbulent mass flux (u’c’) for different Sc.
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Figure 9: Turbulent mass flux (w’c’) for different Sc.

The agreement is very good, despite the difference in Re, to
the simulations of Na et al. and despite the measurements of
Shaw are for pipe and not for channel flow.

For the simulations at Sc¢ = 100 and Sc = 1000 the
mean concentration field and the concentration fluctuations
are shown in figures (11) and (12). With increasing Se, the
gradient at the wall of the mean temperature increases, un-
til almost all the change of the mean temperature field takes
place within 10% of the half channel height §. Accordingly,
the peaks of the temperature fluctuations move closer to the
wall and gets more pronounced. Na and Hanratty (2000)
state that the thickness of the diffusive sub layer scales with
Af  1/+/Sc. This implies that for the high Sc numbers, the
diffusive sub layer, where the highest gradients appear, is not
resolved at all, and that for wall bounded problems the need
for a special wall model comes up.

CONCLUSION

A new method for the simulation of turbulent flows with
passive scalar transport at high Sc was developed. This
method requires a DNS of the turbulent flow, restricting it
on the one hand to low Re flow, where a DNS is feasible. On
the other hand it was shown that by fully resolving the flow
field and using the ADM to model the scalar transport, very
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Figure 11: Mean concentration profile (absolut) at Sc = 100
and Sc = 1000

accurate results for the filtered scalar fields can be achieved.
Up to Sc = 10 the DNS and SEMI-DNS show almost per-
fect agreement. Additionally, it was possible to determine the
mass transfer coefficient K+ at Sc = 1000 accurately and to
provide results for the mean and rms of the filtered concentra-
tion field at this high Sc. Despite that for this Sc-number no
data on the rms of the concentration are available, the results
of our computation seem reasonable. Additionally the devel-
oped method is simple and straightforward and thus easy to
integrate in existing codes.

For the future it is necessary to validate the model against
DNS data of higher Sc number flows, especially the expected
asymptotic behaviour of the cross stress term. Special care has
also to be dedicated to the interaction between the numerics
and the ADM model.
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