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ABSTRACT

The Adaptive Local Deconvolution Method (ALDM) is
a new nonlinear discretization scheme designed for Implicit
Large-Eddy Simulation (ILES). Free parameters of a solution-
adaptive deconvolution operator allow to adjust the numerical
truncation error which acts as implicit subgrid-scale (SGS)
model. To assign physically appropriate values to these pa-
rameters the spectral numerical viscosity is analyzed. By
an automatic optimization employing an evolutionary algo-
rithm a set of parameters was found which yields an excellent
spectral match for the numerical viscosity with theoretical
predictions. Computational results for forced and decaying
three-dimensional homogeneous isotropic turbulence show an
excellent agreement with theory and experimental data.

INTRODUCTION

We consider LES of turbulent flows which are governed by
the Navier-Stokes equations and by the incompressible conti-
nuity equation. A finite-volume discretization is obtained by
convolution with the top-hat filter G

dun _
—— +G*xV-Ny(uny)—vV-Vay = —-G*V - 1565

P (1a)

V-auny =0 (1b)

where an overbar denotes the filtering 4 = G *u. The nonlin-
ear term is abbreviated as V- N(u) = V- uu+ V p, where u
is the velocity field and p is the pressure. The employed filter
approach (Leonard 1974) implies a subsequent discretization
of the filtered equations. The subscript N indicates the result-
ing grid functions obtained by projecting continuous functions
on the numerical grid. This projection corresponds to an ad-
ditional filtering in Fourier space with a sharp cut-off at the
Nyquist wavenumber £ = w/h, where h is a constant grid
spacing. The subgrid-stress tensor

2

originates from the discretization of the non-linear terms and
has to be approximated by a model for closing eq. (1). To
certain extents common explicit models are based on sound
physical theories. Solved numerically, however, the discrete
approximation of the explicit SGS model competes against

Tsgs = N(u) — Ny (un)
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the truncation error of the underlying numerical scheme. A
theoretical analysis performed by Ghosal (1996) comes to
the conclusion that even a fourth-order central difference dis-
cretization has a numerical error which can have the same
order of magnitude as the SGS model. This fact is exploited
for implicit large-eddy simulation where no SGS model terms
are computed explicitly. Rather the truncation error of the
numerical scheme is used to model the effects of unresolved
scales. A recent review on previous implicit LES approaches
is provided, e.g., by Grinstein and Fureby (2004).
The Modified Differential Equation (MDE) for an implicit
LES scheme is given by
oun

ot +é*%-ﬁN(ﬁN)7VV~VﬂN=0

(3a)

V.-any=0 (3b)
where uy denotes an approximant of the velocity uy. The
local Riemann problem is solved by a consistent numerical flux
function Ny . The symbols G and V indicate that G and V
are replaced by their respective numerical approximations. In
fact G * V can be a nonlinear operator. The truncation error
is accordingly

QN = G*V'NN(uN)—é*6~NN(’IIN) (4)
For implicit SGS modeling the discretization scheme is specif-
ically designed so that the truncation error Gy has physical
significance, i.e.

(5)
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THE ALDM APPROACH

With the adaptive local deconvolution method (ALDM) the
local approximation uy is obtained from a solution-adaptive
combination of deconvolution polynomials.
cretization and SGS modeling are merged entirely. This is
possible by exploiting the formal equivalence between cell-
averaging and reconstruction in finite-volume discretizations
and top-hat filtering and deconvolution in SGS-modeling. In-
stead of maximizing the order of accuracy, deconvolution is

Numerical dis-



regularized by limiting the degree of local interpolation poly-
nomials and by permitting lower-order polynomials to con-
tribute to the truncation error. Adaptivity of the deconvo-
lution operator is achieved by weighting the respective con-
tributions by an adaptation of WENO smoothness measures.
The approximately deconvolved field is inserted into a con-
sistent numerical flux function. Flux function and nonlinear
weights introduce free parameters. These allow for controlling
the truncation error which provides the implicit SGS model.

The efficiency of this approach is demonstrated by Adams
et al. (2004) for 1D conservation laws on the example of
the viscous Burgers equation. The extension for the three-
dimensional Navier-Stokes equations is detailed in Hickel et al.
(2005). The main idea is to split the 3D deconvolution into
successive 1D operations. Thereby the nonlinear weights and
the deconvolution operators are specific for each velocity com-
ponent and coordinate direction. However, the requirement of
an isotropic discretization implies symmetries on the parame-
ters so that the 3D scheme contains only one additional param-
eter compared with the 1D case. Integration over transversal
directions is approximated by a Gaussian quadrature rule.
The continuity equation can be satisfied by a fractional step
projection approach, where the pressure is computed from a
top-hat filtered Poisson equation with the modified convection
term.

MODIFIED DIFFERENTIAL EQUATION ANALYSIS

In the following we analyze the MDE in Fourier space in
order to develop a theoretical framework for the evaluation of
subgrid dissipation and spectral numerical viscosity of ALDM.
We consider the discretization of a (2m)3-periodic domain. N
is the number of grid points in one dimension and £ = N/2 is
the corresponding cut-off wave number. Using Fourier trans-
forms the MDE (3) can be written in spectral form as

duc

o T G i€ - Nc (i) + v€*ac = Ge

(62)

i€ - uc=0 (6b)
The hat denotes the Fourier transform, i is the imaginary
unit, and £ is the wave-number vector. A physical-space dis-
cretization covers contributions to the numerical solution to
wavenumbers up to |£| = V/3¢c. For consistency with spec-
tral theories of turbulence which implie isotropy wave numbers
with |€] > £¢ need to be removed. For this purpose we define

s |£| <&c

, otherwise

(7)

On the represented wave-number range the kinetic energy of
the deconvolved velocity is

1 =~ o~k

Suc(§) -uc(§)

Ble) =3 ®)

Multiplying equation (6a) by the complex-conjugate 4, of uc
we obtain

~OB(E) A _

G—> — G(OTc(8) + 2w&*GE(&) = 5 (€) - G () (9)

ot
The nonlinear energy transfer
To(¢) = iug-€- Nolac)

5, (€) - Pe) - / A (€)ac(€ — m)dn (10)

nlSéc
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is the Fourier transform of the nonlinear term. The tensor

P() is defined by Pinn(€) = Emin — EibmEn €177 (Pope
2000). Finally, we deconvolve eq. (9) by multiplication with
the inverse filter coefficient G—1(&) which is defined on the
range of represented scales |€| < £ and obtain

dE(€)
ot

—Tc(€) + w€E€) = G (©as(€) - Ge(&) (1)
The right-hand side of this equation is the numerical dissipa-
tion

enum(€) = GTHE)UL(E) - G (€)

implied by the discretization of the convective term. Now
we investigate how to model the physical subgrid dissipation
€sGs by enum.

An exact match between epum and eggs cannot
be achieved since eggg involves interactions with non-
represented scales. For modeling it is therefore necessary to
invoke theoretical energy-transfer expressions. Employing an
eddy-viscosity hypothesis the subgrid-scale dissipation is

(12)

esas(€) = wsasE?E(€) (13)
Similarly, the numerical dissipation can be expressed as
Vnum = 571121—72(5) . (14)
2621(8)

In general vpum is a function of the wavenumber vector §. For
isotropic turbulence, however, statistical properties of eq. (11)
follow from the scalar evolution equation for the 3D energy
spectrum

IE(E)

o~ Te(©) + 208 E(©) = enum(©)

(15)

This equation is obtained from eq. (11) by integration over
spherical shells with radius £ = |€]

() = f (&)de (16)

1€1=¢

For a given numerical scheme vy, um (€) can be computed from

671(5) Sk Ve
num = T =, . . d,
i =~z | W@ On@de (D
1§1=¢
Convenient for our purposes is a normalization by
tem(EY) = £ fo 18
Unum(E ) = Vnum & E(gc) (18)

with €+ = §

The concept of a wavenumber-dependent spectral eddy vis-
cosity was first proposed by Heisenberg (1946). For high
Reynolds numbers and under the assumption of a Kolmogorov
range E(€) = Cge3/2675/3 extending to infinity the Eddy-
Damped Quasi-Normal Markovian (EDQNM) theory (Lesieur
1997) leads to

—-3/2
vige(€h) = 0441072 X (6) (19)
where X (¢1) is a non-dimensional function exhibiting a

plateau at unity for small wavenumbers £+ < 1/3 and a



sharply rising cusp in the vicinity of the cut-off wave num-
ber £t = 1. Chollet (1984) proposes the expression

Ve ones(€1) = 04410732 14 34.47¢303¢" (20)
as best fit to the exact solution.

In the following the objective is to adjust the free param-
eters of the implicit model to make its dissipative properties
consistent with analytical theories of turbulence. For this pur-
pose we consider a numerical simulation of freely decaying
homogeneous isotropic turbulence in the limit of vanishing
molecular viscosity. The computational domain is a (27)3-
periodic box, discretized by 32 x 32 x 32 uniform finite vol-
umes. Filtered and truncated highly resolved LES data are
used as initial condition @y (tg). Solutions wn(tn) at time
tn = to + nAt, n being an integer, are obtained by advanc-
ing n time steps with ALDM. An a-posteriori analysis of the
data allows to identify the spectral eddy viscosity of the im-
plicit SGS model. For this purpose an algorithm proposed by
Domaradzki et al. (2003) is adapted.

The computed velocity fields w@n(tn) are Fourier-
transformed and truncated at ¢ = 15. Energy spectra
E(€,tn) and spectral transfer functions T (€, t,) are com-
puted from equations (8) and (10). The convolution integral
in eq. (10) is computed in real space. The computation of the
numerical-dissipation spectrum, eq. (11) and (12), involves
the spectral-energy decay which is approximated by

dE(E, th—1/2)
ot

_B(&tn) — E(& tn1)
= At

(21)

at timest,,_ /5 = %(tn_:l—l-tn). Energy spectrum and spectral
transfer function are interpolated as

E(& tn) + E(&,tn-1)
2

Tc(€ tn) + To (€ tn1)
2

Following egs. (11,12,14) the spectral numerical viscosity is

E(ﬁ, tn—l/2) = (22a)

j—'\c(ﬁ, tn—1/2) = (22b)

~ OBE(E,t, _1/2)
To(§tn-1/2) — — 5 ——
Vnum(ga tn—1/2) = e ot v

/ (23)
2£2E(Ev tnfl/Z)

The 3D numerical-viscosity spectrum is obtained by averaging
over integer-wavenumber shells £ — % <lgl <€+ %

4 2
dre Z Vnum (& tn—1/2)

ME 2 ey

Vnum(&vtn—l/Z) =

where M (&) is the number of integer wavenumbers on each
shell with radius £. A subsequent normalization gives

V;fum(ngvtn—l/Z) :Vnum(écngrtn—l/Z) Ag—c (25)
E(¢c)

Isotropic decaying turbulence does not loose memory of the
initial data. An evaluation of vﬁum for one data set only
does not necessarily represent the statistical average. To cope
with this problem the spectral numerical viscosity from 10
uncorrelated realizations is evaluated and averaged. Each re-
alization is advanced by one time step so that computational
cost amounts to 10 time steps per evaluated numerical vis-
cosity. This evaluation procedure is sufficiently efficient for
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an automatic optimization of the free parameter values of the
discretization scheme.

As cost function we define the root-mean-square difference
between the spectral numerical viscosity Vj{um(ﬁJr) and the
spectral eddy viscosity Vgho”et(g“‘) of EDQNM.

The employed automatic optimization algorithm follows
an evolutionary strategy which models natural biological pro-
cesses by stochastic search methods. A set of parameters is
considered as genome of a living individual. The algorithm
operates on a population of individuals and is therefore par-
ticularly suitable for non-smooth cost functions. It applies
the survival-of-the-fittest principle of the Darwinian theory
of evolution. At each generation a new set of individuals is
created by modeled natural processes, such as selection, re-
combination, and random mutation. This process leads to a
population of individuals that is better adapted to a cost func-
tion than the population that it was created from. For further
details the reader is referred to Adams et al. (2004), Hickel
et al. (2004) and the references therein.

After an evaluation of 200 generations, each with 50 indi-
viduals, a final set of parameters was selected. As shown by
Hickel et al. (2005) the spectral eddy viscosity of the ALDM
scheme with these parameters yields an excellent match with
theoretical predictions, figure 1. It exhibits a low-wavenumber
plateau at the correct magnitude and and recovers the typical
cusp in the vicinity of the cut-off wave number.
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Figure 1: Numerical viscosity of ALDM with optimized pa-
rameters compared to the prediction of turbulence theory.
o ALDM, —— EDQNM theory (Chollet, 1984).

VALIDATION

For a posteriori validation of the implicit SGS model pro-
vided by ALDM we perform LES of large-scale forced and of
decaying isotropic turbulence.

All simulations presented in this section are carried out in
a (27)3-periodic computational domain. The computational
domain is discretized by 643 cells unless specified otherwise.
For time advancement, we use an explicit third-order Runge-
Kutta scheme of Shu (1988). The time step At is adjusted
dynamically according to the Courant-Friedrichs-Lewy limit
with CFL = 1.0.



Forced homogeneous isotropic turbulence

For the first test case a large-scale force is added to the
right-hand side of the momentum equation. This extra source
term results in a production of kinetic energy at large scales
that compensates dissipation. Scales smaller than £ = 3
remain unaffected.

We perform simulations for four different cases correspond-
ing to the combination of two different grids with two different
Reynolds numbers. The computational domain is a (27)3-
periodic box. The coarser grid is composed of N3 = 323, the
finer one of N3 = 642 evenly-spaced cells. The computational
Reynolds numbers Re = 1/v are Re = 10? and Re = 10°.
For the lower Reynolds number the Kolmogorov length scale
is of the order of the mesh size Az = 2w/N for N = 64. The
initial condition is a divergence-free velocity field with random
phases and with a 3D energy spectrum E(g) = %5‘5/3. After
an initial transient of 50 time steps samples of the 3D energy
spectra were collected until a converged mean spectrum was
observed.

The resulting 3D energy spectra are shown in figure 2. For
Re = 10? the largest resolved wave numbers are within the
dissipative range. For this case the isotropic Taylor micro scale
Ar can be approximated in terms of the resolved 3D energy
spectrum (McComb 1990). We obtain a micro-scale Reynolds
number Rey = 78 with N = 32 and Re) = 73 with N =
64. For Re = 10° the 3D mean energy spectra coincide for
both mesh resolutions and follow the Kolmogorov law. This
result verifies a posteriori the optimum parameter set which
was based on the corresponding theoretical prediction.

We conclude that with the model parameters found by an
optimum match of a theoretical prediction for isotropic tur-
bulence at Re — oo the SGS dissipation predicted by ALDM
correctly models the local energy transfer. This holds for cut-
off wavenumbers {c within the inertial range and even for
lower Reynolds numbers, for which £ is in the dissipative
range. This indicates that the used model parameters may be
valid universally. This is investigated in the following sections,
where the parameter set is kept unchanged.

Isotropic turbulence at Re — co

We integrate the Navier-Stokes equation by initially pre-
scribing E(E) as inertial-range spectrum for homogeneous
isotropic turbulence in the limit Re — oco. After an initial
transient during which the initial randomly oriented phases
re-align by Navier-Stokes dynamics the energy spectrum de-
cays self-similarly while preserving the & =5/3 Jaw up to the
largest wavenumbers, see fig. 3. The observed decay rate
e = —0K /0t of the resolved turbulent kinetic energy

(1o}
K(t) =Y E(.1)

1

(26)

is proportional to the turbulent kinetic energy to the power
of 3/2, see fig. (4), as required for self-similar decay of an
inertial-range spectrum.
Decay rate and energy-spectrum shape can be assessed si-
multaneously by the Kolmogorov function
Ok (6,8) = ()% €/° B(&,1) (27)
which is plotted in figure 5. For an idealized setting the Kol-
mogorov function would be constant. For our simulations we
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Figure 2: Mean 3D energy spectra for LES of the large-scale
forced Navier-Stokes equation; with 643 cells; ————
with 323 cells; line ~ £75/3,

find a Ck(&,t) which is almost constant in time and has a
wide plateau in & at Cx ~ 1.8. This value slightly differs
from theoretical predictions, but is in reasonable agreement
with other published results. A comprehensive account of the
value of the Kolmogorov constant in numerical simulations of
isotropic turbulence is given by Yeung and Zhou (1997).

Comte-Bellot — Corrsin experiment

A more complex situation is encountered for decaying grid-
generated turbulence for which also the correct representation
of the energy-containing range of the spectrum is important
(Pope 2000). Computations are initialized with spectrum and
Reynolds numbers adapted to the wind-tunnel experiments of
Comte-Bellot and Corrsin (1971), denoted hereafter as CBC.
Among other space-time correlations CBC provides stream-
wise energy spectra for grid-generated turbulence at three
positions downstream of a mesh with a width M = 5.08cm.
Table 3 of Comte-Bellot and Corrsin (1971) gives correspond-
ing 3D energy spectra which were obtained under the assump-
tion of isotropy.

In the simulation this flow is modeled by moving the (27)3-
periodic computational domain downstream with the mean
flow speed. The energy distribution of the initial velocity
field is matched to the first measured 3D energy spectrum



Figure 3: Instantaneous 3D energy spectra for LES of decaying
homogeneous isotropic turbulence at the inviscid limit. ——

instantaneous spectra ; — ——— E~ 5_5/3-

oK
ot

6 4 2
107

Figure 4: Phase diagram of turbulent kinetic energy for decay-
ing homogeneous isotropic turbulence at Re — co. ———-—
e~ K3/2,

of CBC. The SGS model can now be verified by comparing
computational and experimental 3D energy spectra at later
time instants which correspond to the other two measuring
stations.

The experimental data are non-dimensionalized as pro-
posed by Misra and Lund (1996) and by Ghosal et al. (1995).
In order to create the initial velocity field a random field was
allowed to develop for about one large-eddy turnover time ac-
cording to Navier-Stokes dynamics while maintaining the 3D
energy spectrum as given for the first measuring station.

Results of ALDM are compared with those obtained with
a 4th-order central discretization scheme and an explicit
Smagorinsky SGS model. The Smagorinsky model is used
in its conventional and in its dynamic version. For the con-
ventional model (Smagorinsky 1963) the parameter is set to
Cs = 0.18. Lilly (1967) derived this value for sufficiently
large Reynolds numbers and a sharp spectral cut off in the in-
ertial range assuming C'x = 1.4. The dynamic algorithm was
proposed by Germano et al. (1991). Here, Cg is computed
according to Lilly (1992), and an average over the entire flow
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Figure 5: Kolmogorov function for decaying homogeneous
isotropic turbulence at Re — c0. ———— Cg = 1.8 .

field is taken to prevent local numerical instabilities, as it is
established standard.

Examining the computed energy spectra, figure 7, we note
that ALDM performs just as well as the dynamic Smagorin-
sky SGS model. It should be noted that the prediction of
the dynamic Smagorinsky model can be associated as a refer-
ence for isotropic turbulence. The conventional Smagorinsky
model requires ad-hoc adjustment of C's. We have observed,
that choosing Cs somewhat smaller than the theoretical value
gives better results which are close to those of the dynamic
Smagorinsky model.

10

1075 — s

10 10 :

Figure 6: Contributions to energy dissipation in ALDM for
LES of decaying homogeneous isotropic turbulence according

to the Comte-Bellot — Corrsin experiment ; — - — - — molecu-
lar dissipation, ———— implicit SGS dissipation, total
dissipation, - - - - - e~ 17225

For the decay of total kinetic energy K, figure 6, we
find OK/0t ~ t~™ with n = 1.25. This corresponds to
e = OK/Ot ~ t=225 or ¢ ~ K18, The exponent n = 1.25
is in a reasonable agreement with published experimental
data (AGARD 1998; Comte-Bellot and Corrsin 1971; Kang,
Chester, and Meneveau 2003) which range from n = 1.2 to
n=13.



-4 . . —
1077 10

3

Figure 7: Instantaneous 3D energy spectra for LES with
643 cells and for measurements of Comte-Bellot — Corrsin ;
Smagorinsky model, — - -— - - dynamic Smagorinsky
model, ALDM ; Ot/ =42,0¢ =98 and A t' =171
experimental data of Comte-Bellot and Corrsin (1971).

CONCLUSION

With the implicit LES approach the truncation error of
the discretization of the nonlinear terms functions as a SGS
model. Therefore, an explicit computation of model expres-
sions is unnecessary. The presented approach which we refer
to as ALDM is based on an adaptive local deconvolution op-
erator which introduces SGS model parameters directly into
the discretization scheme. A spectral-space analysis of the
modified differential equation is employed to compare the ef-
fective spectral numerical viscosity of ALDM with theoretical
predictions for isotropic turbulence. By means of an evolu-
tionary optimization algorithm a set of parameters is found
which gives an excellent match with the spectral eddy viscos-
ity predicted by EDQNM theory. Computational results are
provided for different large-scale forced and decaying fully tur-
bulent flow configurations with periodic boundary conditions.
It is demonstrated that ALDM performs as well as established
explicit models. The application of ALDM to wall-bounded
flows is subject of ongoing research.
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