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ABSTRACT

For turbulent flows the subgrid-scale (SGS) scalar-variance
dissipation spectrum can be expressed as the co-spectrum of
negative SGS scalar flux and filtered scalar gradient. Us-
ing local isotropy, the radial SGS scalar-variance dissipation
spectrum is expressed in terms of the streamwise components
of the SGS scalar flux and filtered scalar gradient that can
be measured in experiments. Using an array of four X-type
hot-wire and four I-type cold-wire probes, two-dimensional
box-filtered velocities and temperatures in the streamwise and
cross-stream directions by invoking Taylor’s hypothesis are ob-
tained at the centerline of a heated wake flow, at a Reynolds
number based on Taylor scale of 350. From the radial dissipa-
tion spectra the spectral eddy viscosity and Prandtl number
are evaluated. Consistent with classical two-point closure pre-
dictions, when using box filters, the spectral eddy viscosity
and diffusivity decrease near the filter wavenumber. Interest-
ingly, the spectral Prandtl number (the ratio of the spectral
eddy viscosity to diffusivity) has a longer plateau-behavior
than the spectral eddy diffusivity and viscosity, with a range
around 0.7.

INTRODUCTION

In LES, the turbulent fields are decomposed into subgrid
scale and resolved scale fields by performing spatial filtering at
a scale A using a filter kernel, Ga () (Leonard, 1974; Mene-
veau and Katz, 2000). The LES equations for the momentum
and scalar transport equations include the divergences of the
SGS stress tensor 7;; and SGS scalar flux q; defined as

(M
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where ~ represents a convolution with Ga (@), and u; is the
velocity in the i-direction, 6 the passive scalar.

To close the momentum and scalar transport equations,
the SGS stress tensor and scalar flux must be expressed as
functions of the resolved velocity and scalar quantities. Clas-
sical isotropic eddy viscosity (v7) and diffusivity (y7) assume
quasi-equilibrium between large and small scales, and read
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where §ij = %(8?71-/8%- + 0u;/dx;) and éj = 85/8%- are the
resolved strain-rate tensor and scalar-gradient vector, respec-
tively. The best-known model for evaluating the eddy viscosity
and diffusivity is the Smagorinsky model (Smagorinsky, 1963):
both the eddy viscosity and diffusivity are proportional to
A2|S], where |S| = (28mnSmn)/2. In these formulations,
the eddy diffusivities respond equally at all scales of motion,
independent of the wavenumber. However, two-point clo-
sures such as Direct Interaction Approximation (Kraichnan,
1961) or Eddy Damped Quasinormal Markovian approxima-
tion showed that the eddy viscosity (Kraichnan, 1976) and
eddy diffusivity (Chollet and Lesieur, 1982) in wavenumber
space has to depend upon the wavenumber magnitude.

The radial energy spectrum FE< (k,t) of the filtered veloc-
ity and the radial scalar-variance spectrum Fg.(k,t) of the
filtered scalar are defined as follows:

E<(r,t) = |Ga(w)|*E(s, 1) (5)

(6)

respectively, where ~ is the Fourier mode, and E(k,t) and
Ey(k,t) are the radial kinetic energy spectrum from the un-
filtered velocity and the radial scalar-variance spectrum from
the unfiltered scalar field. FE<(k,t) and Eg.(k,t) (Lesieur,
1990) evolve according to

Eo<(r,t) = |Ga(r)|*Eo(r, 1)

(% + QVHZ)E< (k,t) = F(kr,t) + T<(k,t) — H(k,t) (7)

@)

where v and «y are the molecular viscosity and diffusivity, re-
spectively. F(k,t) is the energy injection by large-scale forces,
and T<(k,t) and Ty (k,t) are the transfer spectra caused by
the resolved scales. The quantities H(k,t) and Q(k,t) are the
SGS kinetic energy and scalar-variance dissipation spectra, re-
spectively, and are given by

(5 + 297 Bo< (5, = To< (5, = Qs 1)
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where (-)* is the complex conjugate. The H(k,t) and Q(k,t)
represent the kinetic energy and scalar-variance transfer rates



from a given wavenumber shell || = k to the subgrid scales,
respectively. In the form of diffusive terms,

H(K) = 2ure(k, ka )2 E< (k)

Q(K) = 27re (K, KA)~2E9<("€)

where kA = 7/A is the filter wavenumber. These expressions
define vre and 7re as the ‘real’ spectral eddy viscosity and
diffusivity, as measured from the energy and scalar-variance
spectra (E< (k) and Fy.(x)) and the SGS kinetic energy and
scalar-variance dissipation spectra (H(x) and Q(k)). Also, the
‘real’ spectral Prandtl number is given by:

(11)
(12)

Vre(K, KA)

Yre(K KA ) (1)

Pr(k,ka) =
More details are given in Kang and Meneveau (2005).

The spectral eddy viscosity and diffusivity have been mod-
eled based on the two-point closure, such as EDQNM (Lesieur
et al. , 1997). In the case of the spectral cutoff filter (Chollet
and Lesieur 1981), the modeled spectral eddy viscosity and dif-
fusivity have a plateau behavior for k/ka < 0.3, but increase
for 0.3 < k/ka <1 (cusp behavior) due to the predominantly
local energy transfer across the filter scale. The modeled spec-
tral Prandtl number is approximately constant at about 0.6.
Langford and Moser (1999) supported the plateau-cusp be-
havior in the spectral eddy viscosity using DNS.

In the case of the physical (graded) filters, Leslie and
Quarini (1979) showed that the EDQNM gives a downward
behavior of the eddy viscosity near k/ka = 1 with a non-zero
plateau at low wavenumber.

More recently, Cerutti et al. (2000) obtained array filtered
velocity data at the centerline of a cylinder wake at Reynolds
number based on Taylor scale up to 450. When using a spec-
tral cutoff filter in the streamwise direction (with a box filter
in the cross-stream direction), a cusp behavior in vp(k, Ka)
near the filter scale was observed in agreement with classical
two-point closure predictions. For box filters in the both the
streamwise and cross-stream directions, a downward behavior
in v (K, ka) occurred near the filter scale.

Our main objectives in the present study are to derive
the SGS scalar-variance dissipation spectrum, to obtain the
distributions of H(k), Q(k), vre(k, KA), Yre(K, ka) and Prre,
and to compare the trends with previous results. In order
to accomplish these objectives, we directly measure the lon-
gitudinal SGS kinetic energy and scalar-variance dissipation
spectra sampled at the centerline of a turbulent wake behind
a heated cylinder. Then, the longitudinal SGS kinetic en-
ergy and scalar-variance dissipation spectra are transformed
into each radial SGS dissipation spectrum by using the local
isotropy assumption. Finally, the spectral eddy viscosity, eddy
diffusivity and Prandtl number are obtained and discussed.

SGS DISSIPATION SPECTRA IN TURBULENCE

For locally isotropic homogeneous turbulence the relation
between the radial (H) and longitudinal kinetic energy dis-
sipation spectra (H,rg) was introduced in detail in Cerutti
et al. (2000) as follows:

H(k) = 4H,s(x) — gndH;iW ! zdzfi;cg(n) ”
where .
Hrs(r1) = =2(T11(k1)S11 (k1)) (15)
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Figure 1: Schematic of cylinder wake flow.

Following a similar derivation in Kang and Meneveau
(2005), we can show that the radial SGS scalar-variance dis-
sipation spectrum is determined from its longitudinal dissipa-
tion spectrum as follows:

Q) = 2Quc(x) — x5 (16)
where o
Qqa (k1) = —2(q1(k1)G1 (k1)) (17)

EXPERIMENTAL RESULTS

Experiment apparatus

Experiments are performed in the Corrsin Wind Tunnel
(Comte-Bellot and Corrsin, 1966). The length of the test sec-
tion is 10 m and the size of its cross section is 1.2x0.91 m?.
A schematic of the experimental setup is shown in Fig. 1. A
heated smooth cylinder of diameter D = 4.83 cm is placed
horizontally across the center of the test section. The incom-
ing uniform flow has velocity Us,. 1 and x2 represent the
streamwise and cross-stream directions, respectively, and the
corresponding velocity components are u; and uz. For the
present study, the measurement location is fixed at x1/D = 25
in the streamwise direction at the centerline of the wake flow.

To obtain the filtered quantities, four custom-made minia-
ture probes are used. Each is composed of one X-type hot-wire
and one I-type cold-wire for the velocities in the (21, z2)-plane
and the temperatures, respectively. The separation distance,
h, between the probes in the cross-stream direction (z2) is 5
mm. We use a filter scale equal to twice the distance between
two probes, i.e. A =10 mm.

The signals are sampled at a sampling frequency (fs = 40
kHz) per channel, and low-pass filtered at 20 kHz. The sam-
pling time is 30 seconds, so the total number of data points per
channel is 1.2x 108. Additional details about the experimental
setup are provided in Kang and Meneveau (2002).

Characteristics of heated wake flow

Table 1 shows the main parameters of the heated wake
flow at the measurement location of x1/D = 25 including the
mean centerline velocity Ucp,, the defect temperature 64, the
root-mean-square quantities uirms and @rms, the molecular ki-
netic energy dissipation at the centerline ecr,, the molecular
scalar-variance dissipation at the centerline egcoy,, the Kol-
mogorov length scale = (v3/€)1/4, the integral length scale
l = O.Qui’rms/e, and the Taylor micro-scale A. More detailed
information is shown in Kang and Meneveau (2002).

The molecular kinetic energy and scalar-variance dissipa-
tion rates € and €y are obtained from the third-order struc-
ture functions as described in Lindborg (1999) and Kang



Table 1: Parameters of heated wake flow measured at the
centerline of the wake at x1/D = 25.

Parameter z1/D =25
Ucyr, (ms™1) 13.55
Uso (ms™1) 17.9
04 =0cr — 0 (°C) 0.611
Ulrms (ms’l) 1.80
Orms (°C) 0.251
ecr (m?s~3) 87.2
eocr (°C%s~1) 0.648
n (mm) 0.08
£=0.9u3 /e (m) 0.060
A (mm) 2.94
Rey 351

and Meneveau(2002). The Reynolds number based on Taylor
micro-scale can be calculated from Re) = wuirms)\/v, where
A= (15u%rmsu/e)1/2, is about 350, as shown in Table 1.

In order to obtain filtered quantities, a two-dimensional
box filter is applied to the streamwise and cross-stream direc-
tions. The trapezoidal rule is used for the spatial integrations
(Cerutti and Meneveau, 2000). In the za-direction, a four
point discretization is used for evaluating the filtered velocity
and SGS stresses. In the streamwise direction, the number
of data points inside the box filter is approximated to be
fsA/(u1) and the z1 derivatives are evaluated using finite
differences over a distance h. A three-point approximation is
used for the cross-stream derivatives. Filtered gradients in the
o direction are evaluated using first-order finite differences
over a distance h. More details about the filtering and an
error analysis are presented in Cerutti and Meneveau (2000).

Figure 2(a) presents a comparison between the longitudinal
spectrum F11(k1) of the w1 component and the longitudinal
spectrum Ea2(k1) of the ug component multiplied by 3/4, at
the wake centerline. Here, x1 is the longitudinal wave num-
ber. The vertical dashed line corresponds to the filter scale of
A/n =125 (A = 10 mm). It can be seen that the filter scale
is well inside the inertial range. As can be expected from
the isotropic turbulence in the inertial range, we observe that
Ei1(k1) = %Ezz (k1) over about 1.2 decades of wave number.
The detailed discussions and the same spectra in premulti-
plied form in the study of isotropy are shown in Kang and
Meneveau (2001).

Figure 2(b) shows the longitudinal spectrum of the tem-
perature Fgg(r1). There is a clear inertial range in Fgg(x1)
which coincides with that in E11(k1) of Fig. 2(a). The cold-
wire’s frequency response is sufficiently higher than the filter
frequency, which indicates that subgrid scales will be well re-
solved by the cold-wire sensors.

Radial kinetic energy spectrum of the filtered velocity and
scalar-variance spectrum of the filtered scalar

The longitudinal energy spectra of unfiltered and two-
dimensional box-filtered streamwise velocity, normalized with
62/3A5/3, are shown with non-smooth solid and dashed
lines in Fig. 3(a). As in Cerutti et al. (2000) and Kang
et al. (2003), the corresponding three-dimensional radial en-
ergy spectrum of the filtered velocity E«< (k) is deduced from
the filtered velocity signals by assuming small-scale isotropy.
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Figure 2: Velocity and temperature spectra in Kolmogorov
units (Kang and Meneveau, 2001): (a) the longitudinal spec-
trum of the u; component (solid line) and the longitudinal
spectrum of the us component multiplied by 3/4 (dashed line);
(b) the longitudinal spectrum of the temperature.

The longitudinal and radial spectra (Pope, 2000) of the
filtered velocity are related by

© 22 1
F11<(k1) =/ 3
1

E<(kiz) do (18)

x
where = k/k1. The following functional form for the three-
dimensional energy spectrum is assumed (Pope, 2000; Cerutti
and Meneveau, 2000; Kang et al. , 2003):

4 fes 4
Ec(k) = CK62/3K75/3 e~ a(sn)
[(k0)*2 + ]/ 22
(19)
where cx and o; (i = 1 to 4) are parameters to be de-

cided by comparing with measured Fi11<, and £ and € are
the integral length scale and dissipation rate as reported in
Table 1. The fitted one-dimensional spectrum of the filtered
streamwise velocity is visually compared to the measured one,
and the procedure is iterated until good agreement between
the fitted and measured one-dimensional spectra is achieved.
The parameters finally selected are: cx = 1.71, oy = 0.29,
oz =0.92, a3 = 4.0, ag = 1.7 X 1073, The fitted longitudinal
spectrum of the filtered streamwise velocity is shown with a
smooth solid line in Fig. 3(a), and these values produce good
agreement with the measured longitudinal spectrum except
the large-scale range (k1A < 0.1). The corresponding three-
dimensional radial energy spectrum of %1 in Eq. (19) is shown
with a smooth dashed line in Fig. 3(a).

The longitudinal scalar-variance spectra of unfiltered and
two-dimensional box-filtered temperature normalized with
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Figure 3: Kinetic energy and scalar-variance spectra.
non-smooth solid line: longitudinal energy spectrum; non-
smooth dashed line: longitudinal energy spectrum of the
two-dimensional box-filtered velocity; smooth solid line: fitted
longitudinal energy spectrum; smooth dashed line: radial ki-
netic energy spectrum of the filtered velocity. (b) non-smooth
solid line: longitudinal scalar-variance spectrum; non-smooth
dashed line: longitudinal scalar-variance spectrum of the two-
dimensional box-filtered temperature; smooth solid line: fitted
longitudinal scalar-variance or radial scalar-variance spectrum
of the filtered temperature.

(a)

ege~1/3A5/3 are shown with non-smooth solid and dashed
lines in Fig. 3(b). The radial scalar-variance spectrum of the
filtered temperature can be directly obtained from fitting the
longitudinal scalar-variance spectrum of the filtered tempera-
ture. Similar to the radial kinetic energy spectrum in Eq. (19),
the following functional form for the radial scalar-variance
spectrum of 0 is used:

2+83

1/3 _-5/3 ke

Eg- (k) = coege "k

(=% + 3] 7™

(20)
where ¢y = 1.38, 81 = 0.68, B2 = 1.2, B3 = 0.0, B4 = 0.145.
Bs = 2.0, and good agreement between the measured and
fitted longitudinal scalar-variance spectra of 6 are obtained as
shown with the non-smooth dashed and smooth solid lines,

respectively, in Fig. 3(b).

Longitudinal SGS kinetic energy and scalar-variance dissipation
spectra

The longitudinal SGS kinetic energy and scalar-variance
dissipation spectra, H,s(xk1) and Qqq (K1), are evaluated as
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Figure 4: (a) Longitudinal SGS kinetic energy dissipation
spectra H,s(k1). (b) Longitudinal SGS scalar-variance dis-
sipation spectra Qqg(x1). The thin and thick solid lines

represent the measured and fitted co-spectra, respectively.

the co-spectrum of —7i; and S1; (Eq. (15)), and of —q
and G1 (Eq. (17)), respectively. In terms of data process-
ing, Hrs(k1) and Qqg (k1) are computed from the Fourier
transforms of —7q1, 511, —q1 and 51‘ The number of seg-
ments in the Fourier transform is 576 with overlapping of 50%
between the neihgboring segments. The number of samples in
each segments is 214, The measured longitudinal SGS kinetic
energy and scalar-variance dissipation spectra are shown with
thin solid lines in Figs. 4(a) and 4(b). The dissipation spectra
have significant scatter due to lack of complete statistical con-
vergence. However, clear trends of the spectra as functions of
k1A can be observed, including peaks near at k1A = 0.6.

The values of —<7'11§11> and —(qlé1) evaluated in phys-
ical space are 8.160 m2s~3 and 0.171 (OC)Qs’l7 respec-
tively. Consistently enough, the values of [ H,s(r1)dk1
and f(fo Qqc(k1)dr1 evaluated by integrating the measured
longitudinal co-spectra using trapezoidal rule in Fourier space
are 8.159 m2s~3 and 0.170 (°C)%s™!, respectively. The small
under-estimation in Fourier space is likely due to the Hanning
windowing applied to the data segment.

Radial SGS kinetic energy and scalar-variance dissipation spec-
tra

The Egs. (14) and (16) allow us to transform the measured
longitudinal SGS dissipation spectra into the radial SGS dis-
sipation spectra. However, the measured longitudinal SGS
dissipation spectra are not smooth enough to be differenti-
ated. Therefore, in order to obtain reasonable values of the
derivatives in Egs. (14) and (16), smooth functions are used
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Figure 5: Radial SGS kinetic energy (dashed line) and scalar-
variance dissipation spectrum (solid line).

to fit the measured longitudinal SGS dissipation spectra.

A functional form suggested by Cerutti et al. (2000) is em-
ployed, with a modification to reflect the deviation of the
maximum location from the middle point in log;y(k14), as
follows:

HEY (k1) Qfit (k1)
eA €A
Cexplei(logi(k1A) + c2)* + czexp(calogio(k1A) + ¢5)]
x[0.5 + cgarctan{cr(log g(k1A) + cg)}
+egexp{cio(logyo(k14) + c11)?}]

(21)

where ¢; = —1.7, c2 = 0.11, ¢3 = —0.35, ¢4 = 3.4, ¢c5 = —0.1,
ce = —0.33, ¢ = 20, cg = —0.71, c9g = 0.14, c10 = —6, and
c11 = —0.5. The same functional form is used for both the
longitudinal SGS kinetic energy and scalar-variance dissipa-
tion spectra except the coefficient C, where C = 0.067 for
HE (k1)/(eA) and C = 0.17 for Qg&(m)/(egA). The pa-
rameters in Eq. (21) are chosen by visual comparison with
the measured longitudinal dissipation spectra. The fitted lon-
gitudinal SGS kinetic energy and scalar-variance dissipation
spectra are shown with thick solid lines in Figs. 4(a) and 4(b),
giving good agreements between the measured and fitted spec-
tra except the large scales of k1 A < 0.2.

Figures 5 shows the radial SGS kinetic energy and scalar-
variance dissipation spectra normalized with €A and eyA,
respectively, obtained from the fitted longitudinal spectra in
Eq. (21). Compared to the longitudinal spectra, the peak
locations move towards the filter wavenumber, and the peak
in the radial kinetic energy dissipation spectrum is closer to
the filter wavenumber than that in the radial scalar-variance
dissipation spectra.

Spectral eddy diffusivities and Prandtl number

The distributions of the measured real spectral eddy vis-
cosity and diffusivity along the wavenumber are shown in
Fig. 6(a). The general trend of vre(k,ka) is similar to the
results from Cerutti and Meneveau (2000). At the present
Reynolds number, no clear plateau can be observed in ei-
ther vre(k, ka) and re(k,ka). However, broad peaks near
kA = 0.5 are observed. Consistent with the EDQNM analy-
sis (Leslie and Quarini, 1979), both the measured spectral
eddy viscosity and diffusivity with the box filter decrease
in the vicinity of the filter wavenumber. The negative val-
ues (backscatter) of vre(k,ka) and Yre(K, kA ) at the largest
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Figure 6: Real spectral properties: (a) Spectral eddy viscosity
(dashed line) and eddy-diffusivity (solid line); (b) Spectral
Prandt]l number.

wavenumbers are associated to the negative, but uncertain,
values of H(k) and Q(k). Therefore, the spectral Prandtl
number is plotted only for kA > 0.06 where eddy diffusivities
are positive.

The distribution of the measured spectral Prandtl num-
ber Pr(xk, ka) defined as the ratio of vre(k, KA) t0 Yre(K, KA)
is shown in Fig. 6(b). Clearly, the spectral Prandtl num-
ber has plateau-downward behavior: a plateau behavior in
a range of 0.7-0.9 for 0.2 < kA < 1. Near the filter wavenum-
ber, the decreasing slope in vre(k, ka) is larger than that in
~re (K, £A), which leads the decrease of the Pr(k, ka) near the
filter wavenumber.

The spectral Prandtl number is lower than 1.0 for KA < 7,
however, it is larger than a constant value between 0.3 and
0.6 from the EDQNM predictions (Lesieur et al. 1997). This
relatively large Prandtl number could be associated with the
relatively large cp (= 1.38) found in the present flow.

SUMMARY AND CONCLUSIONS

A methodology to measure experimentally the spectral dis-
tributions of eddy diffusivity in high-Reynolds-number flows
with scalar transport is presented and applied in experiments
of high-Reynolds-number shear flow where local isotropy can
be assumed. Specifically, the sub-grid scale (SGS) scalar-
variance dissipation spectrum is derived as the co-spectrum of
negative SGS scalar flux and filtered scalar gradient. Using lo-
cal isotropy, the result is expressed in terms of the streamwise
components of the SGS scalar flux and filtered scalar gradient.
Using an array of four X-wire and four cold-wire probes, two-
dimensional box-filtered velocities and temperatures in the



streamwise and cross-stream directions by invoking Taylor’s
hypothesis are obtained at the centerline of a heated wake flow.
From the radial SGS kinetic energy and scalar-variance dissi-
pation spectra the spectral eddy viscosity, the spectral eddy
diffusivity and the spectral Prandtl number are evaluated.
Overall, the measurements yield results in good agreement
with important trends predicted by classical two-point closure
(Leslie and Quarini, 1979; Lesieur et al. , 1997). Specifically,
when using box filters, the spectral eddy viscosity and diffu-
sivity decrease near the filter wavenumber. Interestingly, the
spectral Prandtl number has a longer plateau-behavior than
the spectral eddy diffusivity or viscosity, with a range of 0.7-
0.9.
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