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ABSTRACT

The approximate deconvolution model of Stolz and Adams
(1999) has proven itself a practical and effective method for
residual-stress modeling in large-eddy simulation.
tive in many regards, the model is conventional in the sense
that it exploits spatial filtering to separate resolved and unre-
solved scales of motion. On the other hand, although largely
unexplored territory, time-domain filtering for large-eddy sim-
ulation offers both conceptual and practical advantages under
certain circumstances. A natural question therefore arises:
Can the approximate deconvolution model be adapted for
time-domain filtering, and if so, how? The current paper
explores one such approach. The particular temporal approx-
imate deconvolution model developed herein exploits explicit
time-domain filtering by means of a causal exponential fil-
ter expressed in differential form. The unavoidable phase
error of causal filtering necessitates adaptations to the baseline
(spatial) model. Specifically, both the residual-stress and sec-
ondary regularization components of the model require careful
design to avoid instability. Proper design, however, appears
to lead to a family of robust temporal approximate deconvo-
lution models. The current model is demonstrated by tem-
poral large-eddy simulation of plane-channel flow at nominal
Re,; = 180 and Re, = 590. These results are encouraging and
suggest that the temporal model can perform on a par with the
spatial approximate deconvolution model, thereby providing a
viable alternative whenever circumstances warrant.

Innova-

INTRODUCTION

A few years ago, Stolz and Adams (1999) unveiled an ap-
proximate deconvolution model (ADM) for large-eddy simula-
tion (LES), which has performed well for flows as diverse as in-
compressible channel flow (Stolz et al., 2001a) and supersonic
compression-ramp flow (Stolz et al., 2001b). In the ADM,
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the residual stress is approximated to arbitrarily high order
by deconvolving (defiltering) the resolved-scale velocity fields
uy. Specifically, the exact residual stress R;; = w;u; — u;u; is
approximated as

M = UiU; — Ui
P
chﬂék-kl)
k=0

The deconvolved velocity v; approximates the unfiltered ve-
locity u; as a linear combination of (k-times) multiply filtered
fields @),
tion.

The coefficients Cj are derived indirectly from the trans-
fer function H(§) of the primary filter, where £ = KA, k&
is the wavenumber, and A is the spatial filter width. Pro-
vided the filter is invertible (H # 0) and |1 — H| < 1, the
transfer function has an exact power-series inverse, namely
H! = ﬁ = Z:O:O(l — H)*. The exact inverse,
however, is undesirable for applications to LES, for only the
resolved scales are of interest. Truncating the series at finite p
yields the transfer function of the approximate inverse H~1,
namely

vy =

(1)

The index p defines the degree of the deconvolu-

p
™' =14+ (1= H)+(1-H)*+ ..+ (1-H)? = Y (1-H)* (2)
k=0

By isometry between Fourier space (Eq. 2) and physical space
(Eq. 1), the coefficients Cy of Eq. 1 are determined simply
from the binomial theorem (i.e., from Pascal’s triangle).

As a generalized scale-similarity model (Stolz and Adams,
1999), the ADM suffers from insufficient dissipation without
secondary regularization (artificial viscosity) and tends toward
numerical instability. Stabilization is accomplished by adding



a dissipative term to the right-hand sides of the momentum
equations, namely

(3)

where x is an arbitrary damping parameter. The Fourier-
space analog of Eq. 3 is —x(1 — H * ﬁfl)Hﬂj, U, being the
Fourier coefficient of u;. The relevant operator is 1 — H *
H~1, which is purely real, and by means of which secondary
regularization acts as a high-order, low-pass filter. (It is useful
to distinguish here between deconvolution degree p, where p+1
simply defines the number of coefficients C}, and order, which
indicates the flatness of the operator at its origin. Specifically,
the order of an operator in Fourier space corresponds to the
first non-vanishing derivative of its modulus, evaluated at the
origin.) Stolz et al. (2001a) show the secondary filter to have
order O[A?*(P*+1)] where ¢ is the order of the primary filter (in
their case 4), and p is the deconvolution degree (in their case
5). Thus, in the original ADM, secondary regularization acts
at extraordinarily high order (i.e., 24), functioning virtually
as a spectral low-pass filter.

To summarize, in the original ADM, deconvolution serves
two distinct purposes: 1) modeling of residual stress (Eq. 1),
and 2) generation of high-order artificial viscosity (Eq. 3).

Relative to conventional spatial filtering, time-domain fil-
tering for LES (hereafter TLES) offers certain conceptual and
practical advantages (Dakhoul and Bedford, 1986, and Pruett,
2000) that have not previously received full consideration.
Principal among these is that TLES affords a natural bridge
between direct numerical simulation (DNS) and Reynolds-
averaged Navier-Stokes (RANS) methodologies. The efficacy
of TLES rests upon the premise that the removal of high-
frequency content from the frequency spectrum should effec-
tively remove high-wavenumber content from the wavenumber
spectrum as well, so that TLES can be conducted at coarser
temporal and spatial resolution than DNS.

In Pruett et al. (2003) the viability of TLES was estab-
lished for viscous Burger’s flow (at low Reynolds number to
avoid shocks); however, it has remained to demonstrate the
approach for three-dimensional flow. In this paper, we de-
velop a temporal variant of the ADM, the “TADM,” describe
modifications necessary to adapt approximate deconvolution
from spatial to temporal filtering, and present results of TLES
for channel flow.

—x(a; — v5)

TEMPORAL APPROXIMATE DECONVOLUTION MODEL

Let f(t) be any continuous function of time t. A causal
linear filter is readily constructed by the integral operator

t
f(t;A):/ G(r —t; A)f(7)dr (4)

where G is a parameterized filter kernel, its parameter A is
termed the (temporal) filter width, and an overline denotes
a temporally filtered quantity. For admissibility, the kernel
G must be non-negative, must be appropriately normalized,
and must tend toward a Dirac delta function in the limit of
vanishing filter width.

The exponential kernel, among many, satisfies the requisite
conditions. Specifically, G(t; A) = 1/Aexp (t/A) yields the
integral filter operator

t
Ja) = % / exp (1) f(r)dr

oo
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whose transfer function is

1
T 1440

H(Q) (6)
where Q@ = wA, and w is the circular frequency (Fig. 1).

An advantage of the exponential kernel is that the inte-
gral form (Eq. 5) has an equivalent differential form. That is,
differentiation of Eq. 5 by Leibniz’ rule yields the linear ODE

of _s-F -
ot A
for the filtered quantity f. For reasons to become apparent,
in the TADM, explicit filtering is imposed via the differential
form of the operator. In its discrete implementation, Eq. 7
is naturally parameterized by the filter-width ratio r = A/At
(Fig. 2).

Although the residual-stress model of the TADM is for-
mally identical to Eq. 1, the adaptation to temporal filtering
necessitates two modifications: 1) overlines denote temporally
rather than spatially filtered quantities, and 2) the values of
the coefficients Cj, in Eq. 1 must be altered (the subject of
the next section). By appending the Navier-Stokes equations
(NSE) with an auxiliary set of evolution equations for the
multiply-filtered velocity fields ﬂ;k)
tem

, we obtain the closed sys-

aﬂj

= 0
Ox;
ou; 8(ﬂiﬁj) . _@ i 82?11; . OM;,;
ot Oz B Ox;  Re dx;0x; Oz
M;; = T’l}j— VU5
P
v; = chﬂ§k+1) (8)
k=0
e (k1)
9 _(k+1) uf —u;
' = 2 1<k<
8tu" A (I<ks<p)
o0v; R Vi
at A
o VU5 — V05
5 00) = ——— JA —

Certain advantages of the differential form of the filter are
now apparent. First, the governing system is explicitly pa-
rameterized by the filter width A. Second, the entire system,
including the model, can be advanced forward in time consis-
tently by the same numerical integration scheme.

Although it appears that the computational overhead of
the TADM is significant, the burden is relatively modest be-
cause of the simplicity and linearity of the additional evolution
equations. The chief computational burden of the TADM is
storage rather than CPU time. However, the memory saved
by grid coarsening more than compensates for that lost to new
variables.

It was shown in Pruett et al. (2003) that the parameterized
system tends toward the NSE in the limit of vanishing filter
width, and (for stationary flows) toward the RANS equations
in the limit of infinite A, provided the model is exact. For fi-
nite p, the TADM is inexact, which places practical limitations
on A (or r).

It remains to determine an appropriate degree p, filter-
width ratio r, and coefficients C. For the ADM, a single set



of coefficients suffices both for residual-stress modeling and for
secondary regularization. Because of the phase error (Fig. 1)
associated with causal filters, however, two distinct sets of co-
efficients are prescribed for the TADM: one set (C) optimized
for the residual-stress model, the other (Dy) for secondary
regularization. The next two subsections derive the two coef-
ficient sets, respectively, for p = 3.

Residual-Stress Model Coefficients

In Fourier space, the approximate deconvolution operator
is H=! = Z:o CrHF*, in which case the Fourier coefficients
of u; and v; are related by 9; = H * ﬁ*lﬂj. For application
to LES, the ideal shape of the modulus of |H « H~1| is that
of a spectral (sharp cutoff) low-pass filter, in which case low
frequency content is recovered faithfully, while high-frequency
content is completely attenuated.

The binomial coefficients proposed for the ADM are unsuit-
able for the TADM. Due to the phase error of causal filters,
energy at moderate frequency is amplified rather than at-
tenuated. Thus, for the TADM the coefficients C; must be
expressly designed to give |H H 1| “near-ideal” properties.

For specificity, consider third-degree deconvolution (i.e.,

= 3). The parameter space consists initially of four free
parameters: [Co,C1,C2,C3]. The normalization constraint,
which requires the coefficients to sum to unity, reduces the
parameter space by one. Without loss of generality, Cs =
1-Co—C1—Ch.

A further consideration involves the coefficient Cp. Un-
like spatial filters (for example, the Padé filter whose transfer
function is shown in Fig. 3), the transfer functions of causal
filters do not vanish identically beyond the Nyquist frequency
Q = 7. Rather, they tend toward zero asmyptotically (e.g.,
Eq. 6). Consequently, as Q@ — oo, the deconvolution opera-
tor H «x H=1 decays slowly, as 1/Q if Co # 0, and as 1/Q2
if Cop = 0. Because faster attenuation of high frequencies is
highly desirable, Cy is intentionally set to zero. From a physi-
cal point of view, Cp = 0 implies that the deconvolved velocity
is re-constructed only from fields that have been low-pass fil-
tered at least twice. This ensures that high frequencies are
not generated during deconvolution.

There remain two free parameters: C7 and Ca2. These
are determined by forcing the second and fourth derivatives
of |H « H=| to zero to give the operator the desired low-
pass character in Fourier space. (Odd-ordered derivatives are
naturally zero.) Algebraic constraint equations are readily
derived by use of computer algebra software. In general, the
resulting equations are nonlinear and admit multiple solutions.
Conjugate-symmetric complex solutions are discarded because
they cannot be easily implemented in physical space. The re-
maining real solutions yield approximate inverses H~! that
share the same moduli while differing in phase. In particular,
for p = 3, the method described herein yields two real and two
complex solutions, from which the following set of real coeffi-

cients is selected as optimal: [0.0, V6,1/4+ 26 — 26,1 —
V44 2V6 + \/6] Figure 4 presents the moduli of H, ﬁ_l,

and H % H~! for this coefficient set.

Clearly the method can be extended to higher degree de-
convolution. To date, deconvolution degrees of 2, 3, 4, and 5
have been examined, as have a variety of deconvolution coeffi-
cient sets and filter widths. In all cases, the instantaneous and
mean residual stresses are well defined, with mean components
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that have qualitatively correct profiles. In sum, temporal de-
convolution appears to admit a family of robust residual-stress
models.

Secondary Regularization Coefficients

Secondary regularization in the TADM serves to impose
high-order artificial viscosity to attenuate high frequencies
that arise from numerical noise, while leaving the desired low
frequencies relatively undisturbed.

Consider the complex exponential function u(t)
which satisfies the differential equation of a harmonic oscilla-
tor, namely % = iwu. Secondary regularization functions as
a dissipative term for the harmonic oscillator. Accordingly,
consider the model problem

— ew}t7

da N
i — x(@—9) = [iw+x(H* A~ = 1)]a

T (9)

The dissipative term, the Fourier-space analog of Eq. 3, im-
poses exponential damping provided Re[iw—l—x(H*H*l -1 <
0.0 which is satisfied if and only if

Q) = xRe(H+H™ ' —1) < 0.0 (10)
where the damping parameter x > 0 scales the exponential
decay rate A(2).

Equation 10 is violated whenever the binomial coefficients
are used for secondary regularization of the TADM, leading to
exponential growth in time at some frequencies. For a given
degree p, optimal coefficients can be found conveniently by
setting derivatives of Re[H*H_l] to zero, which, once again, is
accomplished via computer algebra software. For example, for
p = 3, there remain three free parameters after normalization.
Optimal coefficients are found by forcing the second, fourth,
and sixth derivatives of Re[H * H~1] to zero. (Again, odd-
order derivatives vanish naturally.) Specifically, the optimal
coefficients for third-order temporal secondary regularization
are [Do, D1, D2, D3] = ?—Z, %269, %, %1] The decay rate A for
this coeflicient set is shown in Fig. 5 for x = 1. Similarly, an
optimal set of coefficients for second-order (p = 2) secondary
regularization is [Do, D1, D2] = [%, %9, i} Figure 5 also
presents A for the p = 2 scenario.

In summary, for the current TADM, the order of the pri-
mary deconvolution is 2p, while that of the secondary filter is
2(p+1). For degree p = 3, for example, the primary and sec-
ondary deconvolutions are of orders 6 and 8, respectively. A
more consistent approach would perhaps blend degree p+1 pri-
mary with degree p secondary deconvolution. Of moderately
high order, secondary deconvolution for the TADM nonethe-
less acts at much lower order than the near-spectral order of
the baseline ADM secondary operator. The effect of lower
order secondary regularization on flow physics is unknown.
Although it has been demonstrated that temporal secondary
regularization is a viable approach to stabilizing the TADM,
there may be other viable or preferable options.

RESULTS

The efficacy of TLES is demonstrated by simulating plane
channel flow at nominal values Re, of 180 and 590. Channel
flow has been studied extensively by DNS, and a high-quality
statistical database exists for purposes of validation (Moser
et al., 1999). Moreover, channel flow has been investigated
by Stolz et. al. (2001a), who use LES methodology with



Table 1: Summary of test cases at nominal Re, = 180.

Case D (r, %) Rer model
TLES180a N/A N/A 203.0 none
TLES180b 3 (8,1.0) 1954 TADM
TLES180c 3 (82.0) 1935 TADM
TLES180d 2 (8,1.0) 189.8 TADM
TLES180e 2 (12,1.0) 1764 TADM

SAK180a N/A  N/A  173. ADM

the ADM. Henceforth the DNS and ADM reference results
will be referred to by the initials of their investigators, MKM
and SAK, respectively. The DNS, LES, and TLES simula-
tions each exploit efficient pseudospectral numerical methods
in space; the latter two simulations employ the code TRAN-
SIT of Gilbert and Kleiser, which is documented in Sandham
and Kleiser (1992).

For all TLES results presented herein, the flow is initialized
to a randomly perturbed laminar state, allowed to transition,
and then permitted to settle into a stationary state prior to
the acquisition of turbulent statistics.

Nominal Re, = 180

Table 1 summarizes the TLES test cases at nominal Re, =
180. For all cases, the bulk Reynolds number was specified
at Repy = 2800. On the other hand, Rer is a statistic
of the flow, for which the correct reference value is assumed
to be that of the DNS, namely Re, = 178.1. Whereas the
reference DNS required a spatial grid resolution of 1282, the
reference LES and TLES were conducted at 323 resolution.
Because the temporal resolution of the TLES was also 4 times
coarser than that of the DNS, the aggregate reduction factor
in computational workload relative to DNS was roughly 100
(after the overhead of the model was considered).

All TLES cases were conducted with the optimized model
coefficients Cj, derived for p = 3 in the previous section. Cases
are distinguished by their particular values of filter-width ratio
r and damping parameter Y, as specified in Table 1. Secondary
regularization was accomplished with coefficients Dy for p = 2
or p = 3, also as indicated in the table.

In summary, all TLES simulations improve upon the no-
model case (TLES180a), for which Re; = 203. The best
results, from Case TLES180e, yield a computed Re, with just
one percent error. As expected, the solution is relatively insen-
sitive to the arbitrary damping parameter Yy, as reported also
for the ADM (Stolz et al., 2001a). Figure 6 presents mean
streamwise velocity profiles for cases TLES180a (no-model)
and TLES180e (optimal) relative to the DNS results of Moser
et al. (1999). Clearly the model, properly tuned, is effective.
It should be kept in mind that Re, = 180 represents in some
sense an extreme test of TLES because barely turbulent wall-
bounded flow is highly anisotropic (Fig. 7). Moreover, present
results with the TADM should be considered suboptimal, be-
cause the parameter space of the model has not yet been fully
explored.

Nominal Re; = 590
Table 2 and Figs. 8-11 summarize the TLES test and ref-
erence cases at nominal Re, = 590, for which p = 3 for both
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Table 2: Summary of test and reference cases at nominal
Re, = 590.

Case Nz X Ny X N, At Re, model (r, %)
MKM 384 x 384 x 257 — 587 none NA
SAK 48 x 64 x 65 — 574 ADM NA
TLES  48x64x65  0.04 595 TADM (8,1.0)

the primary and secondary deconvolutions. For all simulations
Rebulk = 10935.

Figures 8 and 9 present time evolution of instantaneous Rer
and turbulent kinetic energy k, respectively, for TLES. Note
that TLES is sufficiently robust to survive the strong peak in
k associated with transition and that the model kr[= 0.5M;;]
responds appropriately. The computed mean Re, for the
TLES of 595 is just over one percent in error relative to
the reference value of 587. Further, Fig. 10 shows reason-
ably good agreement of the mean streamwise velocity with
DNS results. Finally, Fig. 11 presents selected components of
Reynolds stress relative to their DNS counterparts, where the
sum T;;+ < M;; > directly approximates the exact residual
stress 7;;, and 7;; is the resolved-scale Reynolds stress.
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Figure 1: Transfer function of causal exponential filter. LEG-
END: |H(Q)] (solid); H»(Q2) (dashed); H;(2) (dashed-dotted).
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Figure 2: Transfer function of parameterized exponential fil-
ter.
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Figure 3: 2nd-order Padé spatial filter and related operators
for p = 3. LEGEND: H (solid), exact H~! (dashed), H~!
(dashed-dotted), H+* H~! (dotted), and 1—H+H~! (symbols).
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Figure 4: 3rd-degree temporal deconvolution with optimized
coefficients and r = 2. LEGEND: |H| (dashed), |H~1| (dot-
ted), |H+H | (dashed and dotted), and spectral ideal (solid).
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Figure 5: Exponential decay rate A(2) for temporal secondary
regularization operators with optimized coefficients Dy, for
r=2and x = 1.0. LEGEND: p = 3 (solid); p = 2 (dashed).



Figure 6: Mean streamwise velocity w1 vs wall-normal coordi-
nate z, in wall units. LEGEND: DNS (solid); no-model case
TLES180a (plus symbol); TLES180e (asterisk).
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Figure 7: Measure of extreme near-wall anisotropy in channel
flow at nominal Re, = 180. LEGEND: Reference DNS of
KMM (solid); DNS using TRANSIT (dashed).
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Figure 8: Evolution of instantaneous Re, (solid) and its mean
(dashed) over 500 < t < 1500 for Case TLES590.
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Figure 9: Turbulent kinetic energy for Case TLES590. LEG-
END: instantaneous k (heavy solid); k[= 0.57;] (heavy
dashed); kr[= 0.5M;;] (dashed).
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Figure 10: Mean streamwise velocity u; vs. wall-normal co-
ordinate z, in wall units. LEGEND: DNS (solid); TLES590

(symbols, indicating grid points).
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Figure 11: Reynolds stress. LEGEND: DNS (solid); TLES590
(symbols); < M;; > (dashed).
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