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ABSTRACT

The paper describes a statistical method for the genera-
tion of inflow data for DNS and LES based on the analysis
of second order two-point, two-time correlations. The method
is based on the weighting of uncorrelated random numbers
with appropriate coefficients, representing orthogonal decom-
positions of the covariance tensor itself. The novelty of the
method consists in the possibility it offers of reproducing any
prescribed realisable two-point, two-time correlation. To il-
lustrate its efficacy the method is applied to the generation of
inflow data starting from the two-point, two-time covariance
tensor extracted from the LES of a fully developed periodic
channel flow.

INTRODUCTION

The generation of accurate and realistic inflow data for
LES and DNS is an area of active research and great interest
because of the strong influence of inflow data on the accu-
racy of the computed results. Early attempts by Arnal and
Friedrichs (1993) at computing flows with non-periodic bound-
aries were based on the use of a companion computation, the
only purpose of which was to provide inflow data for the main
computation. An alternative, but similar approach, based on
the collection of time histories from a computation that does
not require inflow data and their use as inflow data was pro-
posed by Li et al. (2000). Even though attractive, because of
the accuracy of the inflow data they generate, these techniques
entail additional computational costs related to the auxiliary
computation or additional storage related to the time histo-
ries. In addition in many practical flows such approaches are
simply not feasible.

A different class of methods is based on the assumption,
often not explicitly stated, that suitable inflow data can be
constructed such that only second order statistics or a re-
stricted set of second order statistics are reproduced. These
methods make use of sequences of random number. The dif-
ficulty in this case is represented by the fact that ordinarily
available random number generators only produce values that
are uncorrelated, so special steps have to be taken to obtain
meaningful second order statistics. The first applications of
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this approach appear to be those of Lee et al. (1992) and Lee
et al. (1993) whereby the two-point second order correlation
was prescribed in the form of an isotropic homogeneous en-
ergy spectrum, and two-time correlations were approximated
by updates of the phases between the Fourier modes at ran-
dom intervals. The method was also applied to the generation
of inlet boundary layer data by Le et al. (1997). Klein et al.
(2003) proposed the use of digital filter to provide the ap-
propriate weights of a sequence of random numbers to repro-
duce Gaussian shaped two-time, two-point correlations with
prescribed correlation time and length scale. In a further de-
velopment of this method di Mare et al. (2005) proposed a
method based on standard operations of linear algebra and
the numerical solution of a bilinear difference problem to re-
produce any two-time, two-point covariance.

The aim of the present paper is to propose an operator
method based on the Wiener-Kintchine theorem and the use
of discrete Fourier transforms, coupled with the usual tools of
linear algebra, to reproduce covariance tensors. The method
appears more robust than the one proposed by di Mare et al.
(2005) and allows the suppression of non-realisable modes. It
is also less expensive and is well suited to the treatment of
very large data sets.

METHOD

This section describes the basic methods needed to repro-
duce any given, realisable, covariance starting from discrete
sequences of uncorrelated random numbers, such as those ob-
tained from random number generators. The discussion in this
section starts from the case of a single complex variable, with
the two cases of finite and infinite sets discussed separately.
Finally the application of the method to two-point, two-time
turbulence statistics on a plane is shown. Throughout this
paper it will be assumed that the ergodic theorem applies, so
that time and ensemble averages can be used interchangeably.

Finite sample size
First consider a finite set of N complex random variables
fi with prescribed covariance tensor

o))

rij =< fifj >



where < - > denotes ensemble averaging and -* denotes the
complex conjugate. The aim is to determine, if possible, a
set of coefficients s;;, such that, given a set of uncorrelated
random variables g, with covariance tensor < gng; >= Snk,
where 6y is the Kronecker symbol, the variables ¢; = s;n9n
have covariance

< qq; >=ry =< fif] > (2
It can be noted immediately that
< $ingnsir9i > < gngy, > Sinsj
= OnkSinSjy
= Sz‘hs;h (3)

which shows that any symmetric factorisation s;;, of r;; is a
valid choice for the sought for coefficients. Some considera-
tions about the existence of such a factorisation are now in
order. It is to be noted that r;; must be an Hermitian, pos-
itive definite matrix, as shown in Batchelor (1953). For such
a matrix a symmetric factorisation is guaranteed to exist, see
Golub and Loan (1996) and a legitimate choice for s;;, is the
symmetric Cholesky factorisation of r;;. This choice leads
to the method proposed by Lund et al. (1998) to reproduce
assigned Reynolds stresses from random data with isotropic
homogeneous energy spectrum.

Another possibility is to use the fact that r;; must admit
a complete set of orthogonal eigenvectors, so that:

(4)

where by, are the eigenvectors of r;; and Aj, are the corre-
sponding eigenvalues. The corresponding expression for the

S;ns are then
Sin = bin v/ An (5)

This representation of the random process f is known as
its Karunen-Loeve expansion, see Loeve (1955). When the
Karunen-Loeve expansion is used, the weights s;;, assume the
physical meaning of characteristic ‘eddies’ of the field under
consideration and have been analysed by Aubry et al. (1988)
and Moin and Moser (1989). In the case of data extracted from
numerical simulations or experiments, the covariance tensor
ri; is likely to be polluted by the presence of small nega-
tive eigenvalues. Whilst the Cholesky factorisation is likely
to break down in presence of such negative eigenvalues, al-
gorithms for the solution of the Hermitian eigen problem are
stable in these conditions, so no difficulties are encountered
during the computation of eigenvalues and eigenvectors of r;;.
Negative, non-realisable modes can be removed by writing

5ih = binv/mazx (Ap,0) (6)

It is worth observing that, in the case of periodic domains, the
computation of eigenvectors and eigenvalues of r;; reduces to
a Fourier transform. This property will be made used of in
the following sections. In this case, however, the immediate
physical meaning of the weights s;;, as characteristic ‘eddies’
is lost, because ‘eddies’ are localised in space, while Fourier
modes are not, see Moin and Moser (1989).

Tij = bin Anbjn

Infinite sample size
In the case of two-time correlations, the covariance tensor
has the form

(7)

rhp =< fz‘f;+h >
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with separation h € |—o0; 0o[. The weights s; are now required
to satisfy

(8)

For the purpose of the present analysis a restriction of the
support of the covariance tensor to a finite size is considered,
i.e. separations h € |—N/2; N/2[ for some large value of N.

Th =< 8i9i8;{ nYith >= SiSip

Algebraic Method. The algebraic method proposed by
di Mare (2004) and di Mare et al. (2005) recognised that equa-
tion (8) defines a set of coupled bilinear difference equations
with Jacobian

S0 s1 89 SN S0 81 89 SN
s1 82 -+ SN S0 S1 SN-1
J=|%2 bn + S0 SN—2
SN S0
(9)

It can be shown that the solution of the set of equations (8) is
related to the Cholesky factorisation of a very large, symmetric
matrix with band width N.

Operator Method: Fourier transforms. An alternative ap-
proach is based on the Wiener-Kintchine theorem, see Lumley
(1970). The Wiener-Kintchine theorem states that if f(¢) is a
stationary random process then there is another, unique ran-
dom process F(w) such that

f= /ei“’tdF

the integral in equation (10) is a stochastic Fourier-Stiltjies
integral and is presumed Lesbegue-integrable. For the purpose
of the present work, the most important properties of dF are
the following

(10)

< dF(w)dF*(w) > d(w)dw,

/é(w)ei‘”dw

P(w)>0 (11)

<fOft+r)> = (12)
which is a statement of the fact that the Fourier transform of
the covariance of the process f is in fact the amplitude of the
Fourier transform of f. Moving back to the discrete field, it
is found that r; is a covariance if and only if it has Fourier
transform

—iwih

Th = Rke (13)

with positive real Ry. In this case the sought for s, are simply

given by
Ry —iwph
sp =4[ —e vk
"PTVN

As noted by di Mare (2004), the numerical solution of equation
(8) is very expensive and riddled with difficulty because of the
nonuniqueness of its solutions and because of the possibility of
introducing negative amplitudes through the restricted choice
of the support. These difficulties are not encountered using
equation (14), whereby non-realisable modes can be removed
by writing

(14)

mazx (Rk,O)e_iwk_h

N

as in the case of finite sized samples.

Sp = (15)



Two-point, two-time turbulence statistics

The application of the method to the two-point, two-time
covariance tensor on the yz-plane of a turbulent channel flow
is now considered. The flow is in the x direction and the y and
z axis are in the wall-normal and span-wise directions respec-
tively. The z direction is periodic. The extent of the domain
in the span-wise direction is denoted by L, and the number of
nodes in this direction is N, while the extend of the domain
in the wall-normal direction is L, and the number of nodes is
Ny. The location y = 0 represents the lower wall of the chan-
nel. For the purpose of the analysis that follows it is assumed
that the points are equally spaced in the z direction, but no
such assumption is needed in the y direction. The support of
the two-time covariance will be denoted by N¢, so that sepa-
rations in time |6t| < AtNy/2 = L¢/2, are considered, where
At is the interval between two subsequent realisations of the
flow.

The two-point, two-time covariance tensor takes the form

Tij(ylv yzs(szvét) =< fi(ylv th)fj (y2,2 + 527t+ 5t) > (16)
[/, v",w’,p']T. A Fourier transform in z and ¢

where f; =
gives

T4 (y17 Y2, 6, 6t) — Z Z Rij (y1, Yo, Kz, kt)e—i(kz5z+kl,5t)
kz ki
(17)
where k, = 2wm./L, and k¢t = 2wm¢/L¢. For the purpose
of applying equation (5), the matrix R;; is arranged as 4 x 4
block matrix with N, X N, entries

R’U/LL R’LL’U R’U/UJ Rup
R{;IU R'uv va Rvp (18)
RE, RE Ryw Rup
RERH RE Ry,

where -H denotes the conjugate transpose. When this parti-
tioning for R;; is chosen, the h-th eigenvector b? will have the
form

h (19)

with each b having N, entries representing profiles of u, v, w
and p fluctuations. The coefficients s;; can now be computed
as

An,0) _.
sin (y, ks, 08) = S b (y, ka, ke) %e s (20)
k¢ t

where )}, represent eigenvalues of the matrix R;;(y1,y2, kz, kt)
corresponding to the eigenvector b?. Note that equation (20)
is obtained by combining equations (6) and (14). The fluctuat-
ing part of the flow field on a plane can be finally reconstructed
from

fily,2) = Z Z Z sin (Y, k2, 0t) e_ikzz¢h (kz,0t)

h k. &t

(21)

where ¢y, (kz,dt) is a set of random complex numbers with
zero covariance.
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RESULTS AND DISCUSSION

In this section the methods described above are applied
to the generation of inflow data for a fully developed turbu-
lent channel flow at Re, = 360, based on channel half height
§. The reference computation is a periodic channel flow per-
formed using a grid of Ny NyN. = 96 X 64 X 96 nodes. The
solution domain extends over 64, 2§ and 3§ in the stream-
wise, wall-normal and span-wise directions, respectively. The
wall adjacent grid points are at a position corresponding t
yt = 1.5 and the stream-wise and span-wise grid spacings are
uniform with Azt = 20 and Azt = 10, approximately. To
maintain temporal accuracy the time step At is adjusted to
ensure 0.1 < CFL < 0.3. To represent sub-grid stresses the
Smagorinsky SGS model is applied, with Van Driest damping
next to the wall. The numerical method used for the compu-
tations is based on a finite volume incompressible solver with
co-located variable arrangement and implicit time stepping.
The code is formally second order accurate in space and time
and uses fourth order pressure smoothing to prevent decou-
pling of the pressure and velocity fields. Further details of the
code are provided in Jones (1991); Jones and Wille (1996);
di Mare and Jones (2003); di Mare (2004).

The two-point, two-time covariance tensor (16) is extracted
from a database containing 20000 realisations of the flow. The
size of the sample is increased four-folds by exploiting the
symmetry groups y — —y and z — —z. The support of the
covariance in time is truncated to a separation |0t| < 3[%,
where Up is the bulk average velocity in the channel, which
corresponds approximately to a full flow through time or 1000
time steps.

The inflow-outflow computation is performed on the same
mesh and with the same numerical parameters as the periodic
computation. For the inflow-outflow computation a new inflow
field is generated via equation (21) at each time step. In order
to do so, a new set of ¢y (kz,dt) is generated for §t = 3Ui0.
All the previously generated values of ¢ are shifted in time by
—At and reused. For the current computations only the first
20 eigenmodes and 21 tangential modes (including k, = 0)
are retained. The fluctuations obtained with equation (21)
are superimposed to the mean velocity profile obtained from
the same database.

Figures 1 to 4 show contour plots for the real part of the
matrix R;;(y1,y2,kz,0) for m; = 5. Shown are the diago-
nal blocks of the matrix and the block corresponding to the
uv Reynolds stress. This particular span-wise mode is active
within 100 wall units from each wall. Figure 5 shows the veloc-
ity fluctuation profiles corresponding to the first eigenvector
of the matrix, i.e. the one associated with the largest eigen-
value. The velocity profiles are also most active within 100
wall units from the wall. It can be seen that in this eigen-
mode stream-wise and wall-normal velocity fluctuations have
different signs, so as to produce negative uv Reynolds stress.
This situation is typical of other span-wise wave-numbers as
well.

The accuracy of the results computed from the periodic sim-
ulation is verified by comparisons with the DNS results of by
Moser et al. (1990). Figures 6, 7 and 8 show comparisons of
the average stream-wise velocity profile, turbulence intensities
and Reynolds stresses, respectively. The slope and intercept
of the log-law and amplitude and position of the maxima in
turbulence intensities and Reynolds stress are well reproduce
by the periodic computation, except very close to the wall.



The agreement between the present results and the DNS re-
sults is reasonable and adequate for the purpose of the present
study.

The same comparison is then performed for the flow sta-
tistics at * = 3§ downstream from the inflow of the inflow-
outflow computation. The corresponding data are shown in
figures 9, 10 and 11. Very little change can be seen in the
mean flow profile as well as in the shape of the turbulence in-
tensities and Reynolds stresses. A small decay in amplitude of
these last quantities can be observed, which is easily explained
in terms of the large number of modes of the inlet flow field
discarded in the present analysis. The overall agreement be-
tween the inflow-outflow computation and the reference data
is, however, satisfactory.

CONCLUSIONS

The paper has described a technique, based on standard
tools of signal processing, for the generation of inflow condi-
tions for LES and DNS starting from any realisable two-point,
two-time covariance tensor. The method allows a clear dis-
tinction between the mathematical problem of reproducing
covariance tensors starting from uncorrelated random numbers
and the turbulence problem of prescribing realistic covariance
tensors, i.e. realistic descriptions of the turbulence structures
present in the inlet flow field. The effectiveness of the method
has been illustrated by the generation of inflow data starting
from the full covariance tensor extracted from the LES of a
fully developed turbulent channel flow.
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Figure 1: Real part of Ryw(y1,y2,kz,0), m; =5
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Figure 3: Real part of Ryy(y1,y2,k2,0), m, =5
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Figure 4: Real part of Ry (y1,y2,kz,0), mz =5
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Figure 5: Real part of the first eigenvector of R;;(y1,y2, k2, 0),
m, = 5. u,v and w components
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Figure 6: Mean stream-wise velocity. - LES; Symbols: DNS,
Moser et al. (1990)

Figure 7: Stream-wise, wall-normal and span-wise turbulence
intensities. - LES; Symbols: DNS, Moser et al. (1990)
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Figure 8: Reynolds stresses. - LES; Symbols: DNS, Moser
et al. (1990)
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Figure 9: Mean stream-wise velocity. Inflow-outflow run.

- LES; Symbols: DNS, Moser et al. (1990)

Figure 10: Stream-wise, wall-normal and span-wise turbulence
intensities. Inflow outflow run. - LES; Symbols: DNS, Moser

et al. (1990)
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Figure 11: Stream-wise, wall-normal and span-wise turbulence
intensities. Inflow outflow run. - LES; Symbols: DNS, Moser

et al. (1990)





