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ABSTRACT

In this paper, a possible solution to the long-standing prob-
lem of near-wall modeling in Large-Eddy Simulation (LES) is
presented. There are two components to the approach. First,
filtering with homogeneous filters is applied in all spatial direc-
tions, including the wall-normal direction. This has the effect
of filtering the wall, and introduces an explicit wall term in the
equations, which is modeled using a novel optimization tech-
nique. Second, an optimal LES model is used for the usual
subgrid term in the interior of the flows. To test the validity of
this approach, simulations were done with optimal LES mod-
els derived from DNS statistical data., with very good results.
Research is ongoing to replace the DNS data with theoretical
models.

INTRODUCTION

One of the pacing problems in the development of reliable
large eddy simulation (LES) models for use in turbulent flows
of technological interest is the so-called LES wall-modeling
problem (Piomelli & Balaras, 2002). It arises because the
length-scale associated with the wall layer of a turbulent wall-
bounded shear flow (wall units) gets smaller relative to the
shear layer thickness approximately like the inverse Reynolds
number (like Re;7/8 in the channel flow). The “large-scale”
turbulence in this thin layer also scales in wall units. If the
cost of an LES of wall-bounded flows is to remain finite in the
limit of infinite Reynolds number, then this wall layer and the
large-scale turbulence it supports cannot be represented di-
rectly, and so must be modeled. However, current LES models
are generally not valid for this near-wall layer because underly-
ing assumptions such as small-scale homogeneity and isotropy
are not valid. The alternative is to resolve the near-wall tur-
bulence. The most successful LES of wall-bounded shear flows
employ this technique, though this is clearly not viable for ar-
bitrarily large Reynolds number. In this paper, we propose a
possible solution to this wall-modeling problem, consisting of
two elements.

The first element is motivated by the observation that in an
LES, locating anything, including the wall, to more precision
than the filter width is inconsistent with the representation.
This leads us to a formulation in which the wall is filtered
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as well as the turbulence. The second element of our pro-
posed solution is the use of optimal LES models for the subgrid
turbulence (Langford & Moser, 1999; Volker et al., 2002; Zan-
donade et al., 2004; Langford & Moser, 2004). In optimal
LES, the subgrid force term (or the subgrid stress) is approx-
imated using stochastic estimation. Optimal LES is a formal
approximation to what we have called the ideal LES evolution
(Langford & Moser, 1999), which can be shown to produce
one-time statistics that are exact, and minimum mean-square
variation in the instantaneous large-scale evolution. The Opti-
mal LES formalism has the advantage in this context of being
valid even in the absence of small-scale isotropy or homogene-
ity; that is, it is valid for near-wall turbulence. As input,
optimal LES requires detailed two-point correlation data. For
the purposes of testing the viability of the proposed wall-
modeling approach, this data has been obtained from the
direct numerical simulation data of Moser et al. (1999).

In the remainder of this paper, the filtered boundary formu-
lation is introduced and a test of it’s capabilities is presented.
The optimal LES models used here are briefly described. The
results of filtered boundary LES of the turbulent channel at
Re; = 590 are then presented in followed by a brief discussion
of the implications of this work.

FILTERED WALL FORMULATION

In the filtered boundary LES formulation, the wall-bounded
domain is embedded in larger domain, with the Navier-Stokes
equations applied to the interior, and u = 0 applied to the
exterior domains. A filter is then applied to the larger domain.
In this paper, a Fourier cut-off filter was used in all cases. The
resulting equations are:
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where M; is the usual LES model term and b; is the boundary
term. The model term is written M; = —07;;/0x;, where
Tij = %(ﬁ—ﬂ; —z}:{[;) is the subgrid stress. If a sufficiently fine
filter width is used then M; is negligible and the only effect is
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Figure 1: Effect of the boundary terms in the evolution of small disturbances in a channel flow. (a) filtered u velocity, (b) filtered
v velocity, (c) filtered pressure, (d) pressure gradient, (e) boundary term for v equation, (f) pressure gradient + boundary term.

— real part, - - - imaginary part.

the filtering of the boundary (i.e. a filtered boundary “DNS”).
Such a “DNS” was used as a test case (see below).
The boundary term (b;) can be written

bi(x):/ 03 (x")n;G(x — x') dx’
OR

where o is the stress at the boundary, including pressure and
viscous stress, R is the boundary of the fluid region R and
n; is the unit normal to the surface.

In many LES of wall bounded flows, approximate bound-
ary conditions are used to model the effect of the wall layer
(Balaras et al., 1996). The approximate boundary conditions
are prescribed in terms of the wall shear stress, so wall stresses
must be determined in terms of the resolved velocities. In the
present formulation, the unfiltered wall stresses are also re-
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quired, and for analogues reason.

In the current description, in which the unfiltered velocity
is zero in the buffer domain, the wall stress is the surface
forcing required to ensure that momentum and energy are not
transfered to the buffer domain. That is, that the velocity
remains zero. This suggests a technique for determining the
wall stress. Instead of defining a force to make the velocity zero
at the boundary as in embedded boundary numerical methods
(Verzicco et al., 1998; Mohd-Yusof, 1998), we choose 04,411 t0
minimize the transport of momentum to the exterior domain.
To this end, the wall stresses at each time step are defined by

minimizing
on
F = / |ﬁ‘2 +« 8_
B t

where the integral is over the buffer domain. The |@i|? term

2
dx (2)
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Figure 2: Mean (left) and rms (right) velocities in turbulent

formulation, — — —Moser et. al. (1999)

forces the energy in the buffer domain to be small, and the
-2

@ % term ensures that the transfer of energy into the do-

The constant « controls the balance between
these two competing requirements and is set to a value of order
At2. In the Fourier spectral method employed here, this mini-
mization is straight forward since it can be done independently
for each (kg, k») wavenumber, resulting in a 6-parameter op-
timization in (ogzy,0yy, 02y) Das & Moser (2001).

main is small.

To evaluate this approach, we consider two test cases: prop-
agation of an Orr-Sommerfeld wave and low Reynolds number
turbulence in a channel. In both cases, the Fourier cut-off fil-
ter is fine enough to make the model term M, negligible.

In the Orr-Sommerfeld case, the simulated growth rate was
within 0.25% of the exact value for the case considered. More
interesting is the role the boundary term plays. Consider the
exact unfiltered pressure fluctuations. They are formally zero
in the exterior, resulting in a discontinuity in pressure, and the
resulting Gibbs phenomenon in the filtered pressure is shown
in figure lc. The wall normal pressure gradient appears in
the v-momentum equation, and this quantity is dominated by
the filtered delta function at the boundary and the resulting
Gibbs phenomenon (figure 1d). Yet the Gibbs phenomenon
in velocity perturbations in figure la and b is imperceptible.
The reason is that the term b, (figure 1le) has exactly the same
structure as the pressure gradient and cancels the Gibbs phe-
nomenon (figure 1f). The role of the boundary terms in the
momentum equation is thus to regularize the stress disconti-
nuities at the wall (both pressure and viscous stresses).

To assess the applicability of this technique in simulating
turbulent flow, a fully developed channel flow is computed on
a 128 x 256 x 128 grid with 20 point in the buffer region. The
friction Reynolds number is Re; = 180 and the domain size
is the same as in Moser et al. (1999). The mean and rms
velocities from this simulation are in excellent agreement with
those of Moser et al. (1999) (see figure 2), and the near wall
turbulence exhibits the familiar structures, such as streaks and
inclined shear layers.

OPTIMAL LARGE EDDY SIMULATION

Optimal LES is based on the observation that there is an
ideal LES model, which guarantees correct single time statis-
tics and minimum error is short-time dynamics (Langford &

channel flow at Re, = 180.
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present using filtered boundary

Moser, 1999; Pope, 2000). This ideal model given by

m; = (M;|a = w), (3)
where m; is the model for the term M; in (1), w is the LES
field, and @ is the filtered real turbulence. In essence, this
is the average of M; over all turbulence fields that map to
the LES field through the filter. Unfortunately this model is
intractable, so in optimal LES we approximate this model us-
ing stochastic estimation (Adrian, 1977; Adrian et al., 1989;
Adrian, 1990). In the LES performed here, the stochastic es-
timation formulation is simplified by the homogeneity of the
channel flow in directions parallel to the wall, and the for-
mulation must be further simplified to avoid problems of over
generalization (Volker et al., 2002). The linear stochastic es-
timate used here can thus be written:

(M;) + Ky5(y) E;(y)

i (y) j
Kij()(E; () Ex ()

i (4)
(M (y) E}; ()

(5)

where * indicate the Fourier transform, and the event vector
Ej; is a vector consisting of the fluctuating LES velocities w;.
and their y derivatives. The correlations appearing in (5) must
be determined to complete the model. For the purposes of the
test described below, the correlations were evaluated using
the DNS data from Moser et al. (1999) at Re, = 590. Using
DNS data allows the optimal LES formulation to be evaluated
without uncertainties introduced by further modeling of the
correlations.

It should be noted that this is the simplest model form of
those proposed by Volker et al. (2002) for the channel, and
that in Volker et al. (2002) models of this form performed
poorly. The reason was that this form does not properly repre-
sent the wall-normal transport of energy and Reynolds stress.
As pointed out by Hértel & Kleiser (1998), in the absense of
wall-normal filtering, the contribution of the subgrid term to
the resolved-scale energy equation is positive near the wall (see
figure 3), which is due to the subgrid contribution to the trans-
port of energy from the production peak to toward the wall.
However, when coarse wall-normal filtering is employed as in
the LES considered here, this structure is eliminated, and the
subgrid energy contribution is nowhere positive. Volker et al.
(2002) found that a more complicated form that did represent
the wall normal transport produced a model that performed
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Figure 3: Subgrid energy transfer (@;M;) in turbulent channel
flow, with and without wall-normal filtering.

very well. But with coarse wall-normal filtering, since the sub-
grid term is everywhere dissipative, the simple model given
above should perform very well, as indeed it does (see below).

FILTERED-WALL LES RESULTS

The filtered boundary formulation and the optimal LES
model were used to perform an LES of turbulent channel flow
with bulk Reynolds number Re, = 10,950 corresponding to
a channel with Re; = 590. Periodic boundary conditions
were used in streamwise () and spanwise (z) directions, with
domain sizes Ly = 2wh and L, = wh (h is the channel half
width). DNS of this case was performed by Moser et al. (1999),
and optimal LES were performed by Volker et al. (2002).

To accommodate the filtered boundary formulation, a
buffer region is added outside the channel and periodic bound-
ary conditions are used in the extended wall-normal (y) do-
main. Fourier cut-off filters in each direction are used to define
the large scales, with effective filter widths of Azt = 116,
Ayt =37 and Azt = 58 in the three spatial directions. In x
and z, these are the same filters used in Volker et al. (2002).
Note that these filter widths are sufficiently large to eliminate
the structure of the near-wall viscous and buffer layers.

The filtered boundary model and the optimal LES model
were used to perform an LES of the channel flow. The sta-
tistical correlations required as input to the optimal LES
formulation were determined from the DNS of Moser et al.
(1999). Sample results from this simulation are shown in fig-
ure 4. Note that despite the fact that the wall layer was not
resolved, both the mean velocity and the rms velocities are in
remarkably good agreement with the filtered DNS.

DISCUSSION

The results described above are intriguing because they
suggest that it is not necessary to resolve the near-wall layer
in an LES to obtain an accurate simulation of a wall-bounded
flow. However, because the simulations reported here were
based on knowledge of of statistical correlations obtained from
DNS, the work presented here does not constitute a practical
broadly-applicable LES model. For this, the need for DNS
statistical data must be overcome. None-the-less, the current
results do demonstrate the value of the wall-filtering approach,
and the optimization model for the wall stresses. It would ap-
pear that this approach may form the foundation of a solution

684

to the well-known LES wall modeling problem.

To relieve the need for DNS data, we are pursuing research
on the theoretical and phenomenological representation of the
near-wall multi-point velocity correlations. A combination
of similarity scaling minimal empirical input may be suffi-
cient to determine the required correlations. However, it is
not clear whether the involved and sophisticated modeling of
optimal LES is needed to take advantage of the filtered wall-
formulation. The fact that the subgrid contribution to the
energy equation is everywhere dissipative suggests that more
standard models (e.g. Smagorinsky may applicable). This is
currently being explored.

Finally, we note that the tests performed here were partic-
ularly arduous for the filtered boundary formulation because
discontinuities in derivatives (as in the velocity at the wall are
poorly represented by Fourier spectral methods, with Gibbs
phenomena as the result. It is particularly remarkable, then,
that the wall stress model used here is able to treat and largely
cancel this Gibbs phenomenon.
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