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ABSTRACT

Neural networks have been used with some success for tur-
bulence control and in particular drag reduction on a flat
wall. Here we examine how results from the POD analysis of
an uncontrolled channel flow can be combined into a neural-
based strategy for drag reduction. Numerical experiments are
performed in a flat channel of relatively small horizontal di-
mensions, so that the flow there is relatively simplified.

INTRODUCTION

Over the past few years the control of turbulence has been
the object of a substantial effort. Several reviews of flow con-
trol techniques can be found in Gad-el-Hak [1], Lumley and
Blossey [2] or Bewley [3]. Results from optimal control theory
have been applied to the equations of Fluid mechanics, in par-
ticular by Bewley et al. [4], and Choi et al. [5]. More recently,
state estimators for the linearized Navier-Stokes equations
have been developed [6] to account for the lack of informa-
tion available about the flow in practice.

Another approach relies on low-dimensional modelling. An
appealing technique for this purpose is the POD (see for in-
stance [7]), which extracts the most energetic structures of the
flow. However, the controlled flow may not lie anymore on the
subspace spanned by the uncontrolled eigenfunctions [8], al-
though it seems likely that the vortical structures exhibited by
the POD decomposition are essential to the turbulence gen-
eration mechanism and should still bear some relation to the
controlled flow [9]. Realistic modelling should therefore adapt
itself to the modifications brought to the flow, which is not
easy to achieve.

A more empirical approach to control is based on experi-
ments, most often performed numerically. One very popular
strategy is the opposition control strategy by Choi, Moin and
Kim [10], which has been the starting point for a number
of investigations. These include the development of neural
networks to estimate the actuation needed from available mea-
surements of the flow. Neural-based experiments have been
performed both in the laboratory (Reynolds and Jacobson
[11]) and numerically (Lee et al [12]).

In this paper we try to combine insights from the POD
description into a neural networks approach. The POD ap-
proach can be viewed as a particular type of neural networks
(see Koumoutsakos 2002 [13]). However, a potential pitfall to
take into account is that the POD gives a global description
of the flow - every structure extends over the whole physical
domain - whereas a control strategy should be localized in the
physical space.

The paper is organized as follows: following the approach
of Lee et al. [12], we first implemented a neural network algo-
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rithm to predict the velocity field from transverse wall shear
measurements. Next, we showed that these measurements
were well correlated with the projection of the full veloc-
ity field on some characteristic structure (the dominant POD
structure of the uncontrolled flow) that we consider essential
to the turbulence-generating process. We then developed an
neural-based algorithm to estimate this POD structure from
wall shear stress measurements.

NEURAL NETWORK'’S MAIN FEATURES

We first built a neural network similar to the one described
by Lee et al. [12]. This neural network aims to find a correla-
tion between wall-shear stress and wall actuations from given
data sets. We only use the transverse wall-shear stress

9y
as the adding of g—“ was not relevant for the neural network
performance. The desired wall actuations is the one recom-
mended by Choi et al.[10] i.e. the opposite of the velocity at
yt = 10. This strategy of blowing and suction at the wall
brings about a drag reduction of 25% by reducing the sweep
and ejection events in the wall-layer. The advantage of using
neural network compared to other control strategies is that it
is able to predict the wall actuations directly from the wall

shear stress which is easily measurable in real applications.

Description of the neural network

It is a standard two-layer feedforward network with hyper-
bolic tangent hidden units and a linear output unit. It was
shown that it was possible to evaluate the wall actuation in
one point using only the values of wall shear stress in the span-
wise direction. So the function describing the neural network
output is:
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with1<j< N, and 1 <k < N,

N is the number of neighboring points in the spanwise direc-
tion. Nz and N are respectively the number of gridpoints in
the streamwise direction and in the spanwise direction. The
W's are the weights of the neural network that are established
during a learning process. This learning process is based on a
simplex algorithm used to train the neural network obtaining
the desired Choi actuation by minimising the error defined in



v T s 4 s & 7 % o o B O O O O Wz W [

(a) Weight distribution for the (b) Weight distribution for the
first input template second input template

Figure 1: Weight distributions for the two inputs template

(2), where v;izs represents sets of Choi’s wall velocity field.
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Learning process and off-line control

The training data consist of several samples of 2D fields of
velocity at y* = 10 and wall shear stress at different time.
Those data sets were carried out with a 3D direct numerical
simulation of a fully turbulent channel flow. The numerical
procedure based on a pseudo-spectral solver is the one de-
scribed by Kim et al [14], that has shown to be popular in
this area. The size of the computational box has been chosen
to include in its width two pairs of low/high-speed streaks
on statistical average. We used then a computational do-
main (Lz, Ly, Lz) = (47/3,2,47/3)h, and a grid resolution of
(96,65,48). The Reynolds number based on the channel half-
height h and center line velocity is 4000 and the one based on
h and friction velocity us is about 140. This configuration is
less complex than a fully turbulent flow but ensures that the
essential dynamics are retained, see Podvin for more details
[15].

Regarding the neural network architecture, we tried two
types of input templates: one with 7 neighboring points and
the other one with 13 neigboring points corresponding respec-
tively to 70 wall units and 130 wall units in the spanwise
direction (Fig.1). The weights in the first case did not con-
verge while those in the second case showed good convergence
already with 20 samples. It seems that with 7 neighboring
points the input template is not large enough to capture all
the informations from the flow that influences that point. The
input template must encompass the size of one coherent struc-
ture, which is about 100 units wide. In the second case the
error reached its asymptotic limit within 100 training peri-
ods. To test the validity of the converged weights we put as
boundary condition the velocity at the wall given by the neural
networks.

By implementing the new boundary conditions at the bot-
tom wall in the channel flow simulation, we obtained 20% drag
reduction (Fig.2) which is the reduction obtained by Lee et al.
The visualisation of the resulting flow shows us that as regards
streamwise vorticity the mean flow remains unchanged unlike
the near-wall structures which have less intensity (Fig.3).

LINK BETWEEN THE SHEAR AND THE MAIN FLOW DY-
NAMICS

The performance of the neural network described above let
us think that there is a strong link between the wall shear
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Figure 2: Spatially averaged drag histories with three types of
boundary conditions: — no control x Choi + neural network

stress and the velocity at y* = 10 where the turbulence pro-
duction is the most important. To bring to the fore this
phenomena we used Proper Orthogonal Decomposition that
is able to extract the main features of the flow. POD is an
appropriate tool in the study of channel flow owing to the
presence of coherent structures in the wall-layer. In our case
the first structure ant the three first three structures, respec-
tively account for 60% and 90% of the total kinetic energy of
the wall region [16].

POD splits up the velocity fields into time-depending co-
efficients and a space-depending basis so that the velocity
fluctuations can be written as:

u(z,y, z,t) :Z

(Y™ (z, y, 2) 3)

The decomposition is optimal in the sense that the first n POD
eigenfunctions capture more energy than any other decom-
posing set of n elements. So the first eigenfonction conveys
the most important mecanism of turbulence generation as
it represents the most energetic structure of the flow. The
computational box is periodic in z and z so that the POD
eigenfunctions in those directions are simply Fourier modes.
It is more pratical in this case to work in Fourier space. In
this space, the velocity fluctuations are defined by:
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As we project the velocity field on the first eigenfunction (n =
1), we observe the correlation between the extracted velocity
and wall shear stress. Let us call © the projection of normal
velocity onto the first eigenfunction of the uncontrolled flow.
The resulting curves (Fig.4a and 4b) revealed that v* and %
were well correlated in the uncontrolled flow. The relation can
be written as:

ukac k2(yst Ok, kz d}kx kz(y) (4)

v o ng—Z ly=0 (5)
This control law is very similar to the one suggested by Lee et
al, but this time we consider the projection of the velocity field
on the first mode. C was found to be about 10 outer units.
As we controlled the flow with Choi’s actuation and projected
the resulting normal velocity on the same uncontrolled eigen-

mode, the wall shear and the projection of the velocity field



(b) simulation controlled at the wall by the neural network

Figure 3: Streamwise vortex isosurface in the channel with two
opposite intensity, darker structures 0.04 and lighter struc-
tures -0.04

remain well correlated (see Fig. 4c and 4d). This suggests that
even though POD eigenfunctions are modified when control is
applied, uncontrolled POD eigenfunctions are still relevant to
describe some of the flow dynamics. The wall-shear stress is
then a good indicator of drag reduction as his time-evolution
is directly linked with the behaviour of the most energetic
structure that develop itself in all the flow.

POD AND NEURAL NETWORK

In this part, we use a neural network approach to better
model the relationship - approximated as a linear one in the
previous section - between the wall shear stress and the POD
eigenmode. This neural network is built to estimate the three
first complex time-varying eigenmodes of the first POD mode,
ie. atl)l, a(l)2 and a(1)3 directly from the wall-shear measure-
ments. Aid of eigenmode and wall-shear data sets extracted
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Figure 4: Time evolution of the projection of the velocity
field on the first POD mode vf;l — and the rescaled wall shear
; Owo1

i=52L — a)b)controlled flow, c)d)uncontrolled flow, a)c)real
Yy

part, b)d)imaginary part

from the uncontrolled flow, we tried to correlate those data
using the same type of neural network as in the first section.

Re(apr) = Wgtanh Z WZ 8( )
AIm(w
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The learning process reached good convergence with 500 sam-
ples, and the resulting a™¢t was more effective than a the
simple linear law given by the suboptimal control (see. table

1).

Table 1: Correlation rate between wall shear stress and v

v mode suboptimal neural

control network
mode(0,1) real part 0.78 0.85
mode(0,2) real part 0.80 0.91
mode(0,3) real part 0.67 0.79
mode(0,1) imaginary part 0.83 0.87
mode(0,2) imaginary part 0.78 0.87
mode(0,3) imaginary part 0.55 0.66

By implementing the new boundary condition for the wall-
normal velocity vc"”]g:"l(O) = —anetw;x’kz(lo) in the 3D
simulation we obtained a substantial drag reduction (20%)
(Fig.6). This strategy is quite appealing as it brings out the

potential of using wall-shear measurements for drag reduction.

CONCLUSION

In this work we tried to enhance the link between tur-
bulence production mechanism and wall shear measurements
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Figure 6: Spatially averaged drag histories with: — no control
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the means of two approaches: Neural networks and POD

analysis. By combining the two approaches, we hope to de-
velop new strategies for drag minimization using realistic wall
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