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ABSTRACT

Recent works have focused on flow topology and the distrib-
ution in space and ”size” of the stagnation points. They show
that this spatial distribution is closely linked to the energy
spectrum and particle pair dispersion statistics. Here we real-
ize flow simulations (laboratory experiments and DNS) where
a multi-scale structure of electromagnetically generated stag-
nation points controls the flow. We thus control the flow’s
topology and the energy input at each scale. As a first step,
we work with a fractal electromagnetic forcing (3 iterations
in space) constant in time (step of forcing) of a shallow layer
brine flow considered as quasi two dimensional.

o We generate and control a multi-scale ”laminar” flow

o Its energy spectrum is E(k) ~ k~P with p=2.5. This is
clearly different from small or large scale forcing (p=5/3
or p > 3) for 2D turbulent flows.

o This exponent (p=2.5) is surprisingly close to theory and
shows the possibility to control the energy spectrum by
pertinent multi-scale forcing.

e This multi-scale laminar flow presents interesting char-
acteristics for mixing: %) during the energy transient,
Lagrangian statistics present a ballistic behaviour lead-
ing to fluid element pair dispersion statistics with mean
square separation ~ t7 where ¥ = 3 as in Richardson
diffusion in isotropic turbulent flow. i) After the tran-
sient, pair dispersion remains strong. < is found in the
range 2.3 <y < 2.5.

INTRODUCTION

Turbulent pair diffusion is intimately linked to concen-
tration fluctuations (Durbin 1980) which are of paramount
importance in environmental, geophysical and industrial mix-
ing processes. As documented in Ciofalo (1994), turbulent
Prandtl numbers vary over an entire decade to fit data. La-
grangian tracking of fluid element pairs can be used with
appropriate synthetic subgrid velocity fields to construct phys-
ically viable alternatives to eddy diffusion subgrid models for
Large Eddy Simulation (LES), see Flohr and Vassilicos (2000).
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Figure 1: Schematic of a fractal (multi-scale) flow based on a
8 in 8 topology ("cat’s eyes” within ”cat’s eyes”).

It is therefore important to understand the physics of turbu-
lent pair diffusion which straddles the entire inertial range of
scales. Recent works on the dispersion of fluid element pairs
in 2D (d=2) and 3D (d=3) turbulent flows have suggested
that the Richardson-Obukhov law (1) is related to the frac-
tal distribution of straining stagnation points in the flow: cf.
Fung & Vassilicos (1998), Davila & Vassilicos (2003), Goto &
Az

Vassilicos (2004).
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A is the pair separation at time t, L is the outer length scale
(characterizing the largest eddies), u’ is the rms turbulent ve-
locity, Ga is the Richardson dimensionless constant and the
over-bar represents an average over many pairs and/or real-
izations.

These works suggest a fractal streamline structure (made of
”cat’s eyes” within ”cat’s eyes”, see figure 1, in 2D turbulence
with an energy spectrum shallower than k~3) and a number
of stagnation points, N, that scales as (2).
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Lo is the size of the system, Cs is a dimensionless constant
and the inner length-scale, 7, defines, with L, the range of
scales where the energy spectrum varies as E(k) ~ k~P. The
fractal dimension, Ds, is related to p by equation (3) and to
v by v = 2d/Ds (when p=5/3, Ds=4/3 and v = 3).

N, (2)

2D/d+p =3 6)

To test these ideas in a fully controlled way, we need to
create a 2D flow with a streamline structure such as in figure



1, and with the possibility to modify the flow and the fractal
dimension, Dsg, at will.

‘We propose to achieve this by fractal electromagnetic forc-
ing. Numerous previous works have used electromagnetic
(EM) forcing to generate turbulent quasi two dimensional
(Q2D) flow, among them Cardoso et al (1994), Sommeria
(1986), Williams et al (1997). Multiple-scale forcing has been
applied by Queiros-Conde & Vassilicos (2001), Staicu et al
(2003), Hurst & Vassilicos (2004) who used fractal grids in a
wind tunnel to stir flows over many scales at once.

Here we combine both approaches to create a multiple-scale
fractal EM forcing of a Q2D flow. In addition, the laboratory
experiments are complemented by Direct Numerical Simula-
tions (DNS).

LABORATORY EXPERIMENTS AND DIRECT NUMERICAL
SIMULATIONS

This section briefly describes the laboratory experiments
and the DNS performed.

Laboratory experiments
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Figure 2: (a) Rig’s schematic for electromagnetic forcing of
a shallow brine layer, (b) Schematic of a fractal flow and
associated permanent magnets, (c) Electromagnetic forcing
distribution, I=1A, Byes=1T, fy in N/m? , (d) Under-wall
distribution of permanent magnets used in experiments, (e)
Photo of the rig.

In the laboratory experiments, electromagnetic body forc-
ing (j x B) is produced by the use of permanent magnets (B,
Bonded NdFeB, Br 0.68T) placed under the wall and electrical
currents (j) generated by platinum electrodes on each side of
the tank. EM forcing is used over many scales simultaneously
to design the stagnation point distribution of figure 2a. The
three scales of forcing are imposed by the magnets’ size: 160
mm, 40 mm, 10 mm. This leads to a scale factor of 4 for the
fractal forcing, implying Ds = 0.5 for the design of figure 2a.
The size of the tank (1700x1700 mm) is large compared to
the size of the magnets and the EM forcing area of the experi-
ment represents only 2.8% of the total area of the bottom wall
which is small compared to all previous works. The thickness
of the brine layer (salt water, 158g/l NaCl) is about 5 mm, in
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Table 1: Typical scales of the fractal flow according to the
forcing intensity. I is the electric current intensity. Lg is
the Eulerian integral length scale computed via spatial veloc-
ity correlation. Reap = urmsLprv/v is the 2D” Reynolds
number based on the root mean square velocity in the mea-
surement frame

I1(A) urms (mm/s) Lg(mm) Reap
0.1 2.09 158.6 1300
0.15 3.06 162 1900
0.2 3.83 165.1 2300
0.3 5.84 172.2 3600
0.4 7.48 177.8 4600
0.53 9.55 183.1 5900
0.7 12.1 189.3 7400
1 16.1 195.3 9900

which case the flow is as Q2D as possible (Satijn et al 2001)
without too much bottom friction which could halt the flow
(Clercx et al 2003). In our case the dissipation due to the
bottom friction is compensated by the sustained forcing. The
kinematic viscosity, v, is about 1.3 1075m?2/s.

The Navier Stokes equation, (4), with gravity and the usual
Lorentz body forces j X B term is:

Du
p—

VP =pViu+jxB
Dt+ +pg=puViu+jx

(@)

The measurements presented in this paper are based on
visualisation.

For dye visualisation a standard digital camera with 3M
pixels was used. The main dye used is fluorescein. For multi-
color purpose, red and white screen printing ink (water based)
were also used.

For PIV measurement, a camera with a resolution of
2048x2048 pizels? and a dynamic range of 64db 12bit (Ko-
dak MegaPlus Model ES 4.0) was used. The PIV grid is
about 287x287 with 56% overlap. The correlation windows
(about 6.35mm) are smaller than the small scale of forcing.
The maximum (x and y) displacement is about 13 pixels for
the searching-windows. The PIV software is an in house soft-
ware of Mechanical Engineering Department Imperial College
London.

Table 1 gives some typical values of the measurements.

Direct Numerical Simulations

In addition to the experiment, we performed DNS of the
forced Navier-Stokes equation in a 2D square domain, see
equation 5. fof(r) is the Lorentz force, fo being the amplitude
(in the current experiments fo is independent of r) and f(r)
being a unit vector accounting for the spatial distribution of
the magnets. The Rayleigh friction term —au is added in or-
der to model bottom friction which is the leading dissipation
mechanism in a shallow layer flow.

Stu+ (u-V)u=—-VP — au+ vAu+ fof(r) (5)
The boundary conditions are periodic, the effect of lateral
boundaries being negligible for a domain size (27 x 27) large
compared to the size of the square magnets (27/5 x 27/5,
2m/20 x 27/20, 27/80 x 2m/80). The modified Navier-Stokes
equation is integrated with a Fourier pseudo-spectral algo-
rithm on a 10242 grid.



TOPOLOGY OF THE FLOW

The study and control of the topological structure of the
flow are important as we aim to achieve a multi-scale flow
where we control ”multi-scale” stagnation points.

Dye visualisations

Figure 3: Dye visualisations for I=0.3A, (a) Entire flow, mag-
nets (M160 and M40) are indicated by N and S, while the
electrical potential is indicated by + and -. The power is
switched ON at t=0, (b) Quarter flow, picture taken about
75s (i.e. turms/LE = 2.5) after switched ON.

Figure 3 shows dye (fluorescein) visualisations of the multi-
scale flow generated for I=0.3A. The positions of the large and
medium sized magnets are indicated in figure 3 by N (North)
and S (South). The three scales associated with the forcing are
clearly present. The effective generation of stagnation points
at different scales and of fractal flow (similar to figure 1) is
demonstrated. Figure 3a shows time evolution of the entire
flow. After 30s (i.e. turms/Lg = 1), the visualisation gives
some closed flow loops at the small scales of forcing (Mio)
while the larger scales dye-lines are not yet closed but still
strongly defined by the forced stagnation point. These are the
different time-scales of flow/forcing associated to the length-
scales of forcing. After some time the flow becomes quasi-
stationary, keeping its multi-scale topology. Figure 3b shows
a quarter of the flow after 75s (i.e. turms/LE = 2.5). The
large scale of forcing (M160) is on the right of the picture and
some characteristic length-scales are given. It is clear that
each scale of fofcing is closely linked to flow scales and that the
controlled stagnation points can be associated to a flow length-
scale about the size of the local forcing. Given that, the three
scales of magnets/forcing will be generally used as references
in our analysis of the multi-scale aspect of the flow. As the
initial condition of picture 3b is one blob for each color, the dye
on the upper-flow part of the stagnation points is extremely
illustrative of the mixing/stirring mechanism associated with
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these points, as well as the interconnection between the scales.

Particle Image Velocimetry (PIV) and scale analysis

Figure 4: PIV measurements for I=0.3A, (a) entire flow, frame
80cm, (b) quarter of the flow, frame 40cm. 1 arrow out of 8 is
represented, ||u|| in mm/s, x and y in pixels. Some streamlines
are given by grey and white lines

Figure 4 presents PIV measurements of the entire flow
(frame 80cm, figure a) and a quarter of it (frame 40cm, fig-
ure b) for an electrical current of I=0.3A (same as for flow
visualisations presented in previous section). The large scale
stagnation point controlled by the forcing M160 is clearly well
defined. The ”8 in 8” flow topology is apparent in the veloc-
ity field, with the three iterations linked to the fractal set of
magnets. The PIV measurements have sufficient spatial reso-
lution to accurately capture the fractal topology of the velocity
field. The maxima of velocity appear above the forcing scales
M160 and M40. The fluid flows above magnet-pairs M40 have
an a-symmetry due to the coupling with the larger scale of
flow /forcing (M160). Nevertheless, the forcing at scale M40 is
strong enough to impose stagnation points.

In figure 5 we plot the small scale flow’s streamlines ex-
tracted from PIV measurements (frame 80cm) for 1=0.3A.
The topology shows two hyperbolic stagnation points asso-
ciated to three ”vortices”. It should be noticed that the small
scale flow going up in between the two small vortices is the
pumping effect of the south magnet (Mio) placed under the
wall. The concordance with figure 3 is striking. The topology
of the small scale flow does not change across the whole range
of flow intensities studied here. The flow topology at small
scales is thus controlled by the small scales of the forcing.

The velocity field topology (figure 4 and 5) is in clear
agreement with that of the flow visualisation (figure 3). This
demonstrates the effective generation of stagnation points at
different scales and successful measurement of such a velocity
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Figure 5: PIV measurements (I=0.3A), streamlines at small
scales

field.

Varying the intensity of the electrical current (i.e. forcing)
allows us to change the intensity of the flow, without signif-
icantly changing the fractal streamline structure of the flow,
over more than one order of velocity magnitude.

DNS

The DNS shows good agreement with the laboratory exper-
iment on the distribution of stagnation points and streamline
pattern, see figures 3, 4, 6. The slight differences in streamline
shapes are due to the fact that the ratio of the size of the box
(or tank) over the size of the magnets is twice smaller for the
DNS than for the rig.

(b)
Figure 6: DNS streamlines pattern and stagnation point loca-
tion; (a) full flow (b) bottom right quarter

CONTROL OF THE ENERGY SPECTRUM
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Figure 7: Flow energy spectrum for different values of the
Reynolds number Reyp. The 3 sizes of forcing (M1, Mao,
Mi60) as well as the PIV correlation window size are indicated
by vertical straight lines. Diagonal straight line illustrates
k=23, PIV frame 80cm.
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The energy spectra are extracted from the quasi-stationary
flows imposed by permanent forcing in time.

As shown in figure 7 and 8, we generate energy spectra
E(k) ~ k™P with p ~ 2.5 which is different from the 5/3
value obtained when the forcing is purely small scale (inverse
cascade of energy) and the value 3 (or higher) obtained when
the forcing is purely large scale (direct cascade of energy) in
2D turbulence. Furthermore, the expected exponent of the
energy spectrum from the design of figure 2a and p + Ds =
3 is about 2.5 which is surprisingly close to the one of the
simulations. The oscillations of the energy spectra decrease
with the increase of the Reynolds number. They correspond
to the spatial periodicity of the forcing.

To our knowledge, this is the first 2D laboratory set up
where a power spectrum with a prescribed exponent is im-
posed and controlled by the forcing.
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Figure 8: Energy spectrum for DNS, H2 = fg/ua3 ~ 8102

The good agreement between experiments and DNS con-
firms that this control comes from the spatial distribution of
the forcing and associated stagnation points.

MIXING AND LAGRANGIAN STATISTICS

Figure 9 gives an illustration of the mixing/stretching of 3
initial blobs of different colors. This time-series clearly shows
a stretching mechanism where the presence of alternative color
”lines” (black, orange, green, white) and very long interfaces
are striking. Adding time dependence of the forcing should
increase the mixing.

Lagrangian statistics are computed from time resolved PTV
measurements by integrating trajectories of fluid elements. To
remove the noise at small scales a 3x3 averaging is used tak-
ing benefit of the 56% overlap. Even if the main flow is in the
measurement area, some fluid elements are moving inside and
outside the measurement area. To keep constant the number
of fluid elements in our one- and two-particle statistics, the
flow is closed at the size of the tank (via continuity equation)
to ensure mass conservation. Except for the quality of the sta-
tistics, there are no effects on the physics of the flow as: i) only
the fluid elements crossing the measurement area are taken
into account; i) the velocity of the flow outside the measure-
ment area is more than 10 times smaller than urms, leading
to a potential mixing there more than 100 times smaller than
the one in the measurement area; 4ii) the turn-over time scale
in that outer area is extremely large (100 times) compared to
the flow turnover time (Lg/urms) which is itself larger than
the Lagrangian time. iv) The duration of the acquisition is
kept much smaller (10 times) than the turn-over time in the
outer area. .

The lagrangian correlation time is T, = 28.15s (i.e. T =
0.37Lg/urms) and is extracted from the lagrangian corre-
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Figure 9: Illustration of dye mixing and stretching with a
multi-scale electromagnetic forcing constant in time for a quar-
ter of the flow (I=0.3A).

lation function given in figure 10 for Resp = 1300. The
oscillations in the lagrangian correlation are the consequences

of the symmetry of the frozen flow and its turn-over times.
Figure 11 (a&b) gives fluid elements pair dispersion with
an initial separation of Ag = 1 pizel. The sensitivity to Ag,
for short times, has recently been noted, Nicolleau & Vassilicos
(2003), Flohr & Vassilicos (2000). In addition, figure 11b gives
the derivative (linear estimation) of the dispersion which is less
sensitive to Ag. These two curves show two different values
of v (6): v = 3.1 between switch on and end of transient
(estimated from energy growth) and v = 2.3 for longer times.
A2 t\”

7 =% (TL)

(6)
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Figure 11: Two fluid elements dispersion versus t/TL (a)

(Atwo/LE)?; (b) 0(Atwo/LE)2/0(t/TL). (1 129 161 pairs)

The exponent of 3.1 obtained for v during the transient is
close to the value of 3 given by the Richardson-Obukhov law
for turbulent flows, (Richardson (1926), Obukhov (1941)) even
thought our flow is laminar (Resp ~ 10). This exponent has
been observed in many experiments (e.g. Julien et al.(1999),
Ott & Mann (2000)) and numerical simulations (e.g. Boffeta
and Sokolov (2002)). After the transient, the two-particle dis-
persion shows an exponent of about 2.3. This is higher than
the value 2 which could be expected for a simple laminar-shear
stretching.

It should be noticed that the root mean square separation
of two-fluid elements stays smaller than the integral scale, Lg,
of the flow which is about 10 times smaller than the size of the
tank. The second regime observed after the transient is self-
consistent and does not come from a limiting length reached
during dispersion (Lg or Lignk/2) as might be the case in
Julien et al (1999) for the second regime observed but not
commented.

Figure 12: One fluid element dispersion, (Aone/LE)2, versus
t/Tr. (1 129 161 elements)

Figure 12 gives satistics of one fluid element dispersion.
The influence of the energy transient gives a first power
law with (Aone/LE)? ~ (t/TL)3. Once the flow is quasi-
stationary (Aone/Lg)2 ~ (t/Tr)''! could indicate a random
motion. Nevertheless, two-particle statistics remain corre-
lated (for long time) with an exponent clearly different from
1 (y > 2). This difference between one- and two- fluid-
element(s) dispersion is attributed to the symmetries and
numerous time periodicity of the flow: most of the fluid el-
ement pairs are trapped in the same quarter of the flow (and



secondary flow structures) while the statistic of one-fluid el-
ement dispersion are realized over the four quarters and all
secondary flow structures.

Concerning transient effects, Figure 13a shows a linear evo-
lution of the energy with time: u2,,, ~ ¢ for 0 < t < Tr/2.
The energy growth could also be interpolated using u2,,, =
u? (1 — exp(—atv/H?)) to add the long time asymptote, (cf.
Paret et al. (1997)). u2,,, ~ t is in perfect agreement with
(Aone/LE)? ~ (t/TL)®.

The transient corresponds to a step of forcing giving an ac-
celeration to the flow which contributes to fluid element-pair
dispersion as it does for one fluid element dispersion. In this
case this constant gives A" ~ t3*/2, Figure 13b is a com-
parison of fluid element pair dispersion with the one expected
from the constant acceleration effect. The two dispersions are
extremely close.
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Figure 13: (a) Energy growth during transient. The line cor-
responds to u2,,; = u2 (1 — exp(—atv/H?)) with a=1.46; (b)
A™ during the energy transient. The straight lines show the
ballistic dispersion associated to accelerated flow for each or-
der. (1 129 161 pairs)

This indicates that the time dependency of the forcing
intensity (for EM forced shallow layer) is affecting particle sta-
tistics by time dependent ”quasi-constant accelerations” and
energy transfers (due to bottom friction) associated to a sud-
den step of EM forcing.

For fluid element statistics realized and started when
the flow has reached quasi-stationary state (no energy tran-
sient), measurement of one fluid element statistics gives to
(Aone/LE)2 ~ (t/TL)? for t < Lg/urms which is clearly
different from the value of 3 obtained with the additional sud-
den starting step effect. When t > Lg/urms (Aone/LE)? ~
(t/Tr)'. Two fluid elements dispersion has an exponential
growth for t < Ty, and (A/LEg)2 ~ (t/T)%"5 for t > Ty.

WORK IN PROGRESS

A variety of avenues are currently being developped. Many
types of time-dependent forcing are being considered in the
laboratory and in the DNS. Direct Lagrangian measurements
are currently being made by Particle Tracking Velocimetry
(PTV). Similar fractal forcing schemes over much wider ranges
of scales will be studied by DNS. We plan to examine, among
other issues, the relation between the Lagrangian exponent,
v, and the Eulerian geometrical exponent, Ds, as well as be-
tween the Lagrangian bulk constant, GaA, and the Eulerian
bulk constant, Cs. These dimensionless numbers control the
intensity of concentration fluctuations.
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