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ABSTRACT

A large eddy simulation (LES) with the dynamic
Smagorinsky-Germano subgrid-scale (SGS) model is used to
study passive scalar dispersion in a turbulent boundary layer.
Instead of resolving the passive scalar transport equation, fluid
particles containing scalar are tracked in a Lagrangian way.
The Lagrangian velocity of each fluid particle is considered to
have a large-scale part (directly computed by the LES) and
a small-scale part. The movement of fluid elements contain-
ing scalar at a subgrid level is given by a three-dimensional
Langevin model. The stochastic model is written in terms of
SGS statistics at a mesh level. The results of the LES are
compared with the wind-tunnel experiments of Fackrell and
Robins (1982 J. Fluid Mech. 117 1-26) and with the LES
results of Sykes and Henn (1992 Atmos. Environment 26 A
3127-3144), who used a completely Eulerian approach with a
non dynamic SGS model. Our simulations predict the quan-
titative features of the experiments of Fackrell and Robins
(1982 J. Fluid Mech. 117 1-26). Moreover, by using the
Lagrangian approach, scalar fluxes are computed with no ad-
ditional modeling assumptions and show good agreement with
the experimental data.

INTRODUCTION

Owing to an increasing interest in environmental problems,
considerable attention has been focused on the prediction of
concentration levels downwind of polluting sources in turbu-
lent boundary layers. Since the pioneering work of Deardorff
(1970), LES has become a well established tool for the study
of turbulent flows (Meneveau and Katz, 2000), the transport
of passive scalars (Sykes and Henn, 1992; Kemp and Thom-
son, 1996) as well as the dispersion of reactive plumes (Sykes
et al., 1992; Meeder and Nieuwstadt, 2000). Current LES
of scalar fields are increasingly applied to the study of atmo-
spheric dispersion of pollutants, to the evaluation of mixing
and segregation rates (Meeder and Nieuwstadt, 2000) or con-
centration peaks (Xie et al., 2004). However, these Eulerian
approaches are less employed when it comes to computing the
concentration variance or the SGS characteristics of the scalar
field. In this study, a Lagrangian stochastic model is cou-
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pled with a LES with the dynamic Smagorinsky-Germano SGS
model (Germano et al., 1991), in order to obtain concentration
field fluctuations and scalar fluxes.

In order to model the velocity field that advects the fluid
elements at a subgrid level, the three-dimensional Langevin
equation model (Thomson, 1987), is written in terms of the
local SGS characteristics. This way, the Lagrangian stochastic
model is entirely given by the quantities directly computed by
the LES with the dynamic Smagorinsky-Germano SGS model,
Germano et al. (1991).

The results of the computations are compared with the
wind-tunnel dispersion results of Fackrell and Robins (1982)
and with the LES of Sykes and Henn (1992), who used an
Eulerian approach with a non dynamic SGS model.

LARGE-EDDY SIMULATION

A turbulent boundary layer flow is computed using the LES
code ARPS 4.5.2. The continuity and momentum equations
obtained by grid filtering the Navier-Stokes equations are:
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where wu; is the fluid velocity, p is the total pressure, v the
molecular kinematic viscosity, p the density and i = 1,2,3
refers to the x (streamwise), y (spanwise), and z (normal) di-
rections respectively. B; includes the gravity and the Coriolis
force. The tilde denotes application of the filtering operation:
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where the grid filter is given by:

if |7 —7 < A/2
otherwise
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The filter width A is defined as A = (AszAz)l/g

, where



Ag, Ay, A, are the grid spacings in the x, y and z directions,
respectively.
The effect of the sub-grid scales on the resolved eddies in
equation 1 is presented by the SGS stress, 7/ = ﬁ;ﬂ; — Uy .
The pressure equation is obtained by taking material
derivative of the equation of state and replacing the time
derivative of density by the velocity divergence using the mass

continuity equation:
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where Ap is the pressure deviation from an undisturbed dry,
hydrostatic base state, ¢ is the speed of sound and 6 the
potential temperature. The flow studied here is a neutral tur-
bulent boundary layer. The potential temperature variations
are therefore negligible.

The determination of the SGS stress, T[j,
using an eddy viscosity hypothesis:
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is parameterized
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where the turbulent eddy viscosity K, is:
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the resolved-scale strain tensor is defined as
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and [5\ = \/2§z‘j§z‘j is the magnitude of Sij, The model
coefficient C' in equation 6 is determined locally and instanta-
neously with the dynamic SGS closure developed by Germano
et al. (1991) and modified by Lilly (1992).

The dimensions of the computational domain in the stream-
wise, spanwise and wall-normal directions are, respectively,
ley = 6H, ly, = 3H and |, = 2H, H being the boundary
layer depth. The Reynolds number based on the friction ve-
locity and the boundary layer depth is Re = 15040. The grid
is uniform in the ay-planes and stretched in the z-direction
by a hyperbolic tangent function. The grid spacings are
Ay =0.083H, Ay = 0.083H and 0.0025H < A, < 0.083H.

The no-slip boundary condition is applied at the wall. On
the top of the domain and in the spanwise direction the mirror
free-slip and the periodic boundary conditions are applied,
respectively. In the streamwise direction, at the end of the
domain the wave-radiation open boundary condition is used
(Klemp and Wilhelmson, 1978) in order to allow waves in the
interior of the domain to pass out freely through the boundary
with minimal reflection. At the beginning of the domain, in
the streamwise direction forcing is applied. The data set is
obtained from the experimental results of Fackrell and Robins
(1982).

The motion of fluid particles is computed by solving the
following equation:

(7)

(8)

x; is the position and v; is the Lagrangian velocity of the fluid
particle, given by:

vi(t) = ;i (F(t)) + vj(t) (9)
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This velocity is considered to have an Eulerian large-scale part
i (Z(t)) (which is known) and a fluctuating SGS contribution
v;(t), which is not known and will be modeled by the stochas-
tic model described in the following section. The Lagrangian
large-scale velocities are obtained by an interpolation proce-
dure. We used a tri-linear quadratic Lagrange interpolation
method with 27 nodes. The time-integration of equation 8
is performed using a second-order Runge-Kutta method. At
the boundaries, in the z-direction, particles that move out of
the domain are re-introduced at the source, in the y-direction
they are re-introduced using the periodic boundary conditions.
Particles that reach the ground rebound respecting symmetric
conditions.

SUBGRID LAGRANGIAN STOCHASTIC MODEL

The movement of fluid elements containing a scalar at a
subgrid level is given by a three-dimensional Langevin model:

dv; = (7:(Z, 7, 1) + i (F, 1) (vj — Gy)) dt + Bi; (Z, t)dn; (t)
dx; = v;dt

(10)
where dn; is the increment of a vector-valued Wiener process
with zero mean, (dn;) = 0, and variance dt, (dn;dn;) = dtd;;.
The fluid particle velocity is given by a deterministic part
¥i + aijv; and by a completely random part 3;;dn;. Within
the deterministic term, 7, stands for the large-scale velocity
contribution, while a;;v’ stands for the fluctuating SGS ve-
locity of the fluid particle. The coefficients a;;, 8;; and ; are
determined by the following analysis. Their expressions are
given by the equations 17, 18 and 19.

Since ¥(t) is Markovian, the Lagrangian subgrid PDF of
the fluid velocity P (7,t) satisfies a Fokker-Planck equation:
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By integrating this equation all the subgrid statistical mo-
ments of ¥(t) can be obtained. The local Lagrangian mean
and variance write as:
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The coefficients of the stochastic model, a;j;, 8;; and 7;,
are determined by relating the subgrid statistical moments
of ¥(t) to the filtered Eulerian moments of the fluid velocity.
Here, we proceed by analogy with van Dop et al. (1986) who
developed this approach in the case of a classic Reynolds aver-
aged decomposition. By introducing a subgrid Eulerian PDF
Pe ("2 t)
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and by assuming that at a mesh level P, (¥,t) and Pg (i, t)

are equivalent, the subgrid Lagrangian mean fluid velocity, at
a given position and at a given time is supposed equal to the



filtered Eulerian fluid velocity given by the filtered Navier-
Stokes equations:
Ti(to) = ui (o) (15)
and
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Finally, knowing that the subgrid turbulence is homoge-
neous and isotropic (basic assumption of the LES), the coeffi-
cients of the stochastic model are given by:
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where k is the subgrid turbulent kinetic energy, € is the subgrid
turbulent dissipation rate and C is the Lagrangian constant.
The fluid velocity given by the modified Langevin model writes
as:
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The large-scale velocity of the fluid particle is directly com-
puted by the LES with the dynamic Smagorinsky-Germano
SGS model. In order to determine the SGS contribution (c;;
and (3;,) we need to resolve an additional transport equation
for k. This equation is deduced from Deardorff (1980).

(20)
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where & = C.k3/2/A. The terms on the right-hand side of
equation 21 correspond to the production by buoyancy, the
production by shear, the diffusion of k and the dissipation.
Since we are interested in neutral flows the potential temper-
ature variation is neglected. The turbulent eddy viscosity Ky,
is computed by a dynamic procedure as described in the pre-
vious section.
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THE DIFFUSION MODEL

In order to take diffusion into account a deterministic, con-
tinuous in time pairing particle exchange model is used. A full
description of this model can be found in Michelot (1996) or
in Simoéns et al. (1997). We will resume here only the main
aspects.

The domain is divided in boxes that are small compared
to the length scale of the flow (Pope, 1985). In each box, at
each time step, particles are randomly selected by pairs. For
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each pair (m,n), the particle concentrations ¢, (t) and ¢y, (t)
will evolve according to:

dcst(t) = (en(t) — em(t))
(22)
dc;—t(t) =1 (Cm(t) — Cn (t))

1 is a relaxation coefficient. From a theoretical analysis 1 is
chosen so that the PDF p. of the concentration tends to a
Gaussian function in isotropic turbulence. As suggested by
Spalding (1971), ¢ can be expressed as ¢ = §/Ty;5f, Where
¢ is a random number between —1 and 1, and the diffusion
time Ty; 7y can be written as Ty;55 = T/Cdiff7 with Cg;z55 a
constant and T the time scale of the velocity fluctuations de-
fined as T' = k/e. Pope (1985) explained that Cg;s¢ has to be
adjusted with the relaxation of the standard deviation of the
concentration level o.. Even though Pope (1985) suggested a
value of 2, Michelot (1996) proposed a value of 2.25 as more
appropriate.

MODEL PREDICTIONS AND DISCUSSION

Description of the simulated experiment

A full description of the experimental facility and results
can be found in Fackrell and Robins (1982). Here, the main
characteristics of the experiment necessary for understanding
the simulations are given.

A turbulent boundary layer over a rough wall is gener-
ated in an open-circuit wind tunnel. A plume from a point
source at zs/H = 0.19 is studied. The elevated source has a
8.5mm diameter and it emits at the average velocity of the
flow over its height. The source gas consists only of a neu-
trally buoyant mixture of propane and helium. The former
is used as a trace gas for concentration measurements. Fack-
rell and Robins (1982) measured the mean concentration, the
concentration fluctuations and the fluxes in the passive scalar
plume.

Velocity field

The height H of the turbulent boundary layer is 1.2m and
the roughness length is zo/H = 2.4x10~%. The mean velocity
at the boundary layer edge U, is 4m/s and the friction velocity
us/Ue = 0.047. Figures 1 and 2 show predicted profiles of
mean velocity and turbulent kinetic energy compared with
the experimental data of Fackrell and Robins (1982) and the
LES of Sykes and Henn (1992). In order to obtain the correct
mean velocity and turbulence levels, Sykes and Henn (1992)
used the roughness length as an adjustable parameter. For
the profiles presented here they set the roughness length, zo,
to 2 X 1073 H. The mean values are obtained by averaging
the fluctuating field over the horizontal extent of the domain
and also over a time period sufficiently long to obtain stable
statistics. The LES resulted in a fairly accurate prediction of
the mean velocity.

For the turbulent kinetic energy the SGS part, the resolved
part and the total of the calculated field are separated. The
SGS contribution k is obtained from equation 21. We note
that the SGS part is small compared to the total turbulent
kinetic energy, except near the wall. Most of the turbulent
kinetic energy has been resolved by the LES. The agreement



between the numerical results and the measurements is quite
good, however, the LES shows discrepancies near the wall,
where the fluctuations are mostly parameterized.The parame-
terization of the small-scale statistics gives an overestimation
of the turbulent kinetic energy and the velocity fluctuation
variances at the wall compared to the results of Sykes and
Henn (1992). Probably, the increasing anisotropy near the
wall is not correctly represented by our correction. In this
study, we only consider elevated releases, at z = 0.19H,
where the simulated turbulence is largely resolved and in
close agreement with the observations.
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Figure 1: Vertical profile of streamwise mean velocity. Line -
LES; Dashed-dotted - LES of Sykes and Henn (1992); Squares
- measurements of Fackrell and Robins (1982).
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Figure 2: Vertical profile of turbulent kinetic energy. Lines
LES: Broken line - resolved; Chain - sub-grid; Full line - total;
Dashed-dotted - total of Sykes and Henn (1992); Squares -
measurements of Fackrell and Robins (1982).
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Mean concentration field

The vertical profile of mean concentration at z/H = 2.88
from the source is shown on figure 3. The computed con-
centration profile is in good agreement with the experimental
results, except near the wall. This is probably due to the
unresolved nature of the turbulence near the wall.
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Figure 3: Vertical profiles of mean concentration at x =
2.88H. Line - LES; Dashed-dotted - total of Sykes and Henn
(1992); Squares - measurements of Fackrell and Robins (1982).

Concentration fluctuations

The vertical profile of the concentration fluctuation vari-
ance, 0_2, normalized by its maximum value is illustrated in
figure 4, showing close agreement with the experimental data.
However, for the same reason as for the mean concentration
profile, the concentration fluctuation is overestimated at the
ground.
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Figure 4: Vertical profiles of mean-square concentration at
r = 2.88H. Line - LES; Dashed-dotted - total of Sykes and
Henn (1992); Squares - measurements of Fackrell and Robins
(1982).



Skewness and kurtosis

In figure 5 the flatness coefficient of the concentration PDF
is plotted against the skewness coefficient. The collapse of the
data for five different downstream distances from the source
is remarkable. The profiles have a parabolic form as clearly
seen with the best fit quadratic curve. This fact was previously
supported by Mole and Clark (1995) and Chatwin and Sullivan
(1990) for scalar dispersion in turbulent shear flows. They
reported that for all probability distributions, the skewness
coefficient S and the flatness coefficient K should verify the
relation K > S2? + 1, the equality being verified only in the
case when the sample space consists of exactly two discrete
values i.e. without any molecular diffusion. The numerical
results are slightly greater than K = S2 + 1 because diffusion
is taken into account in our modeling.
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Figure 5: Profiles of the flatness coefficient K of concentration
as a function of skewness coefficient S. Symbols: LES; Full
square - /H = 0.96; Triangle - ©/H = 1.92; Triangle (down)
- x/H = 2.88; Square - /H = 3.83; Diamond - «/H = 4.79.
Line - best fitted quadratic curve. Dashed-dotted - S2 + 1

Concentration fluxes

Figure 6 shows the mass flux profile, wc, at * = 2.88H. In
the figure Chyaz is the local maximum concentration for each
profile. The evolution of the profile shapes is in good agree-
ment with the experimental data. The flux profiles develop
from being antisymmetric about the source height near the
source, toward a ground-level source profile.

CONCLUSION

A LES coupled with a Lagrangian stochastic model has
been applied to the study of passive scalar dispersion down-
wind of a localized source of contaminant. Fluid particles are
tracked in a Lagrangian way. The Lagrangian velocity of each
fluid particle is considered to have a large-scale part and a
small-scale part at a subgrid level. The subgrid movement of
fluid elements containing scalar is given by a three-dimensional
Langevin model using the filtered SGS statistics in inhomo-
geneous turbulence. The results of the computations are
compared with the wind-tunnel experiments of Fackrell and
Robins (1982) and with the LES of Sykes and Henn (1992) who
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Figure 6: Vertical profiles of vertical scalar flux, wc at z =
2.88H. Line - LES; Dashed-dotted - total of Sykes and Henn
(1992); Squares - measurements of Fackrell and Robins (1982).

used an Eulerian approach with a non dynamic SGS model.
Discrepancies near the lower wall are due to the fact that tur-
bulence in this region is modeled rather than resolved.

The LES coupled with the Lagrangian stochastic model
provides good description of the plumes from elevated sources.
Vertical profiles of mean concentration, concentration fluctu-
ation variances and scalar fluxes match well with the experi-
mental profiles.

Chemical reactions can be easily included without addi-
tional scalar equations and only by attributing initially differ-
ent scalar species to each fluid particle. Improvement of the
LES would noticeably improve the concentration levels at the
wall. Further developments will include the anisotropy of the
flow near the surface in the stochastic model.
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