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ABSTRACT

Dispersion in rotating stratified turbulence is investigated
by an analytical linear model, kinematic simulations and di-
rect numerical simulations in order to observe the impact of
nonlinearity on single-particle and two-particle statistics. The
anisotropy of these Lagrangian quantities is discussed in re-
lation with the Eulerian field anisotropy and its structures,
pancake- or cigar-shaped depending on the dominant body
force. We show that a linear approach is valid for single-
particle dispersion, and that the nonlinear structuring of the
Eulerian field influences particle dispersion at long times.

INTRODUCTION

Lagrangian models of rotating and stratified turbulence are
needed to model mixing and transport in geophysical flows.
Environmental applications, such as the simulation of disper-
sion of pollutants from a planned industrial facility or the
transport of nutrients in the ocean are actual problems which
need an accurate Lagrangian model of rotating and stratified
turbulence. Furthermore, mixing of chemicals in environmen-
tal flows, such as ozone in the atmosphere or carbon dioxide
in the ocean can have strong climatic effects due to different
rates of the associated chemical reactions. Simulations of these
processes necessitate a good understanding of the Lagrangian
processes in rotating stratified turbulence.

Experimental Lagrangian data or measurements in nature
are rare [1] as following fluid particles in a turbulent flow is
difficult. One method of gaining information on turbulent dif-
fusion is to find and apply laws connecting the Eulerian and
Lagrangian velocity fields and calculate Lagrangian statistics
with Eulerian velocity fields. We study a simplified case which
nevertheless captures the most important anisotropic physi-
cal mechanisms in geophysical flows: stable stratification and
rotation, taken into account in the Boussinesq system of equa-
tions

u+u-Vu—vViu = —-Vp—-2Qnxu+bn, (1)
Ob+u-Vb—xV3 = —N’n u, (2)
V-ou = 0 3)

with the N the Brunt-Vaisala (buoyancy) frequency and
the rotational frequency. Both parameters act on the veloc-
ity field linearly and compete against the nonlinear advection
term. Furthermore, for cases with rotation and stratification,
the ratio of & = 2Q/N is a crucial non-dimensional number
characterizing the flow.

“Turbulence” and “wave” like dynamics are defined by
splitting the velocity field in the eigenmodes of the linearized
system (1)—(3), so that the total turbulent energy of a rotating
and stratified flow can be divided into a vortex mode and a
wave mode. The vortex mode is a fraction of the horizontal
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velocity field, storing kinetic energy. The wave mode consists
partly of the non-vortex velocity field, also storing kinetic en-
ergy, and the buoyancy field, storing potential energy. The

dispersion relation of the wave o = \/N2 sin2 0 + 492 cos2 0
depends on 6, the polar angle with the vertical, and creates a
singular case for the value o = 1, as a limit between the rota-
tion dominant from the stratification dominant cases. Linear
processes in the flow field differ over the cases, due to linear
wave dynamics with variable dispersion laws.

Lagrangian statistics are basically generated by following
particles, in our case equivalent to fluid elements, in a velocity
field and by calculating statistics of the position as a func-
tion of time. Statistics means the average over values of all
trajectories and/or ensembles with notation <>.

The Lagrangian frame of reference is moving with a fluid el-
ement, so fundamentally different from the Eulerian one. The
initial particle position is important, as it is the decisive quan-
tity deciding the evolution of the trajectory. The Lagrangian
position of a fluid element labeled by the initial position X,
z(t) = (X, t), has a Lagrangian velocity V(t) related to the
Eulerian velocity field w(a, t) by V(t) = w(x(X,t),t). There-
fore the position of the particle advected by the Lagrangian
velocity field can be written down as

z(t) = V(X,t) = u(x(X,t),t) (4)
which subjects the Lagrangian position of the particle a(t) to
feedback by itself and consequently to a nonlinear evolution.

We study two Lagrangian quantities, the first of which is
single-particle dispersion, i.e. the time evolution of the dis-
tance particles have from their initial position X. Second, we
also calculate relative dispersion defined as two-particle dis-
persion, i.e. the time evolution of the distance between two
initially neighbouring particles.

The role of nonlinear processes in Lagrangian statistics

The trajectory equation 4 is nonlinear. Is this enough to
model advective properties of a time dependent flow field? Is
a linear flow field enough to model Lagrangian statistics with-
out using trajectories and therefore equation 47 The role of
nonlinearity in the dynamics of the flow field on Lagrangian
statistics is a key point in answering this question. Taylor [2]
discovers a relationship between Lagrangian velocity correla-
tions and one-particle dispersion, but, with an argument of
Corrsin [3], a model of one-particle dispersion can be devel-
oped in the framework of Rapid Distortion theory (RDT) [4],
from Eulerian two-time velocity correlations [5]. This linear
model manages to quantitatively predict velocity correlations
and single-particle dispersions for rotating and stratified tur-
bulence for moderate times. At long times, when diffusion
processes dominate, the model is expected to be inaccurate.
Nevertheless, the importance of nonlinear processes in La-



grangian statistics where only one trajectory is involved seems
limited. This might change for two-particle dispersion. Pre-
liminary, we found the role of nonlinearity in stratified rotating
Lagrangian statistics relatively unimportant, especially when
one compares this role to the one in Eulerian statistics.

So how can one distinguish linear from nonlinear phenom-
ena in a simple way? We use results for Lagrangian quantities
obtained with three fundamentally different approaches. The
first method uses two-time velocity correlation functions ana-
lytically deduced with RDT. They are put into relation with
Lagrangian statistics using the simplified Corrsin hypothesis.
This method is therefore strictly linear, using no integration
of Lagrangian trajectories and is referred to as “RDT/SCH”.

Trajectories integrated with the help of kinematic simula-
tions (KS) are used to simulate the properties of Lagrangian
statistics. KS uses an ensemble of frozen vector fields, com-
posed of random spatial Fourier modes, as velocity fields. The
trajectories are therefore followed on these spatially random
velocity fields which incorporate the exact linear wave dynam-
ics. Thus, the intrinsic nonlinearity of the trajectory equation
4 has an effect on Lagrangian statistics.

The third method consists in tracking particles within ve-
locity fields generated by fully nonlinear direct numerical sim-
ulations (DNS). So all dynamical nonlinearities as well as any
nonlinearities from the trajectory equation 4 are taken into
account.

Linear Lagrangian model: RDT/SCH. The possibility of
evaluating velocity correlations at arbitrary times from RDT
in connection with Taylor’s relation [2] suggests a model to
predict single-particle dispersion [5] relating Eulerian and La-
grangian velocity correlations by a simplified Corrsin hypoth-
esis (SCH) [6, 3].

Provided the initial velocity field is known, the exact linear
solution from RDT not only yields the time evolution of the
velocity field @ but also analytical expressions for higher-order
single-point statistics, upon integration of two-point correla-
tions of u in spectral space. This yields kinetic energy spectra,
potential energy, and two-point two-time spectra of the hor-
izontal or vertical velocity components. Strictly speaking,
this method only applies to Eulerian correlation spectra, but,
following Corrsin’s argument, these can replace Lagrangian
ones when computing single particle dispersion with the time
integration method of Taylor (equation 6). This gives an
analytical expression for calculating one-particle Lagrangian
displacement correlations using two-time velocity correlations
([6, 5]). Details of the method are explained in [5], which also
describes the general results for the stratified/rotating case
with arbitrary initial partition of potential and kinetic ener-
gies. In these results, we observe that the mere variation of
dispersion relation due to different cases produces different
dispersion behaviours of the linear model.

Kinematic Simulation models a turbulent velocity field as
a superposition of random Fourier modes so that the field
is automatically incompressible. No dynamical equation is
involved, although oscillations physically related to internal
waves are explicitly introduced for each mode by using the
linear solution from RDT [7].

Both the choice of random wave vectors distribution and
the initialization of KS need to be done with extreme care
to render it as physically realistic as possible, as no dynamic
processes alter the initial field later on. Once this is properly
taken care of, Lagrangian statistics calculated with KS capture
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the main Lagrangian properties of anisotropic turbulence.

In KS, the time-dependent velocity field @(9 (k) is ex-
pressed in the Craya-Herring frame of reference (spectral unit
vectors e(!) and e(?) which ensure incompressibility, see [8]),

as a discrete Fourier sum
(m,n)=(Mgy,Ny)

(1)

ui(wv t) = Z ﬁ‘mn(t)e(l)

(o AN, ) ) etonne
(n,m)=(1,1)

(5)
where the subscript mn implies a dependence on the dis-
cretized wave vector k., which alone represents a given wave
number at a given polar angle 6,,. The number of resolved
modes is Ni My.

The time evolution of @(% (kmn,t) is given by the the dis-
crete RDT linear solution which propagates the chosen initial
conditions, obtained by computing the Green’s function of the
linearized system (1)—(3).

KS is then used as a Lagrangian model of turbulent dif-
fusion by numerically solving the fluid trajectory equation 4,
where the velocity u(x) is given by (5).

The spectral energy distribution is fixed throughout time
by an analytically prescribed standard spectrum (o k* for
kmin < k < k; and (x k=%/3 for k; < k < kmaxz). The
different runs of KS are referred to as KSO KS0.1 KS1 KS10
and KSinf, depending on the value of o.

Direct Numerical Simulation is used to solve the Boussinesq
equations 1 to 3 with a standard fully de-aliased pseudo-
spectral collocation method permitted by homogeneity [9].
Trajectories are followed through the flow field in order to
generate Lagrangian statistics. Although the initialization is
less important in DNS than KS, as triadic exchanges slowly
de-correlate the velocity field from the initial fields, transient
effects due to an anisotropic initialization sometimes disappear
only after several turbulent turnover times. We initialize us-
ing isotropic initial conditions and a narrow band initial energy
spectrum, and a resolution of 5123 points is used. To let higher
order velocity correlations grow, we perform an isotropic pre-
calculation, and thereby allow for discontinuities in statistical
data derivatives at the time of introduction of an anisotropic
body force into the system.

Trajectories in DNS are obtained by solving the fluid tra-
jectory equation 4 as for KS. The runs from DNS are referred
to as DNSO, DNS0.1, DNS1, DNS10 and DNS-inf depending
on the parameter «, and DNS-iso is the isotropic DNS.

SINGLE-PARTICLE DISPERSION

A basic Lagrangian quantity is the single-particle disper-
sion. By integration along the trajectory of a fluid ele-
ment, one gets mean displacements along each i-th direction
Azi(t, ) = zi(t) —xi (') = f:, z4(s)ds, which, as covariances,
give single-particle dispersion in all three space directions,
i=1,2,3[2]

Nilt,t) =<Aay(t,t')>?= [lds' [} <its(s)ii(s')> ds.  (6)

For the analytical linear method, the Lagrangian velocity cor-
relations in (6) are replaced by their Eulerian counterparts
derived from RDT [5], following the simplified Corrsin hy-
pothesis.

For studying anisotropy, we compare single particle disper-
sion in the horizontal and the vertical directions separately.

Vertical single-particle dispersion A33(0,t) is shown in fig-
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Figure 1: (a) Linear prediction, (b) KS, and (c¢) DNS of ver-
tical single-particle dispersion for different @ = 2Q/N. The
dominantly rotating curves are scaled with 2€2 instead of IV
for the time as well as the dispersion scale.

ure 1 calculated with RDT/SCH, KS and DNS. The similarity
of the three figures is remarkable, considering the differences
in the methods with which the results have been obtained.
Especially the statistics obtained from KS and DNS are re-
markably similar.

Three phenomena may be identified:

e A ballistic regime (A3z3 o t?) can be observed at small
times, for all the values of @ and all models.

e An oscillating plateau for cases with non-zero stratifica-
tion, even if rotation is dominant, is seen at intermediate
or long times.

e Finally, at longer times a Brownian regime can be
observed for some cases, such that Ass o t.

The ballistic regime is expected in all Lagrangian dispersions,
illustrating simply the absence of interactions between the
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fluid particle and the flow for small enough times. It de-
fines the smallest Lagrangian time scale, measuring the time
at which the flow starts to interact with the fluid particle. For
the vertical particle dispersion in rotating and stratified tur-
bulence, this time can be universally normalized by using T as
the time scale. The ballistic regime is observed up to around
T = 0.5, similar in all cases, as it is a linear phenomenon.
The absolute values of the one-particle dispersion can be nor-
malized by the dominating parameter N or 2Q and by the
initial vertical turbulent kinetic energy <u?>/2 [7]. For an
isotropic Reynolds stress tensor, such as in RDT/SCH, this
comes down to using the total turbulent kinetic energy q2/2,
but in DNS, due to its anisotropic velocity field, the differences
can be large. In KS, the anisotropy in the turbulent kinetic
energy has no effect and ¢2/2 is used as normalization.

The plateaus illustrate a confinement of vertical displace-
ments for fluid particles, which scale with any non-zero value
of N. This plateau is definitive in RDT/SCH, while it dis-
appears for KS and DNS at long times. The scaling of the
plateau universally fixes the evolution for the vertical one-
particle dispersion [7], and, apart from the purely rotating
regime with a = oo, the scaling seems to be always valid,
even for dominantly rotating cases. The nonlinear phenomena
in Lagrangian statistics develop on a long-time scale, so the
absolute confinement of particles in the vertical one-particle
dispersion is a linear effect. The absolute confinement is a
consequence of the potential energy which can be transformed
to kinetic energy, limited for each fluid particle. However, if
the available potential energy varies, the confinement can be
replaced by a diffusive motion which would exhibit a Brown-
ian T-law. Such an effect needs diffusive mechanisms for the
scalar, in our case density fluctuations. Although the available
potential energy is fixed for an instant in time, it can “regain”
lost potential energy by nonlinear transfers from neighboring
fluid particles.

The Brownian regime is a typical phenomenon observed in
one-particle dispersion in isotropic turbulence. At some dis-
tance Aax from the particle’s initial position, the Lagrangian
velocities at the initial and current positions are uncorrelated
so that the increase in Az follows a random-walk. Az is
therefore Brownian and follows a (Ax)? o T law observed
in figure 1(c) for the run DNS-iso at 7" &~ 10. The time
associated with this transition is associated with the largest
Lagrangian phenomena and generally called 77, and compa-
rable to the integral time in Eulerian statistics. If velocities
are vertically correlated, i.e. for cases with dominant rotation,
we do not expect the same mechanism to apply for a linear
T-law. Although cases with rotation calculated by RDT/SCH
exhibit a linear T-law and cases from KS and DNS show a
short tendency toward a 7T-law at a time 7" ~ 1, this ten-
dency is replaced in DNS and KS by a time law T7, with
v = 2, for « = oo. The linear evolution of rotating vertical
single-particle dispersion may therefore not be due to an ef-
fect similar to Brownian diffusion as a random-walk evolution
is expected to appear only at later times.

We observe further differences between the three cases.
The oscillations in the linear method are regular and slowly
damped, due to linear phase mixing only, which is not present
at a = 1 (undamped oscillations). As a consequence, in DNS,
the ascent of the one-particle dispersion seen for the case a« = 1
is a nonlinear effect. As the dynamics is strictly linear in KS,
we attribute the similar evolution of the one particle disper-
sion to the nonlinearity in the fluid trajectory equation 4. This
“nonlinear” tendency of a reduced confinement is confirmed by
KS and DNS runs at higher Froude numbers (not shown here).
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Figure 2: (a) Linear prediction, (b) KS, and (¢) DNS of hori-
zontal one-particle dispersion for different o = 2Q/N.

Horizontal one-particle dispersion A11(0,t) is shown in fig-
ure 2. Again, the similarity is good, though figures 2(a) and
(c), from the linear method and DNS compare better than
the KS results. As for Ass, in all three cases the horizontal
one-particle dispersion shows a t2 law at small times. With ro-
tation one finds a linear t-law at about 0.1 integral time scales,
which, depending on the amount of stratification, returns to
a t2 time evolution.

The main difference between the three figures is the vertical
axis scaling, done here with the initial horizontal velocity cor-
relation length scale [8] and initial mean velocity. The points
of transition to anisotropic behaviour appears earlier in KS
and latest in RDT/SCH. Furthermore, the transient linear
t-law of DNS10 and DNS-inf is not as long as correspond-
ing cases in RDT/SCH or KS. This might be a low Reynolds
number effect as well as a difference between linear/nonlinear
evolution.
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Single particle dispersion in isotropic turbulence exhibits a
Brownian behaviour for very long times. This regime starts
to appear in isotropic DNS shown in figure 2(c). All other
runs do not show such a behaviour. In anisotropic turbu-
lence the Brownian regime might still exist, but appearing
only at longer times. The possible absence of a linear t-law
for horizontal one-particle dispersion in anisotropic cases can
be attributed to a non-zero velocity correlation length due to
large structures. The long-time dynamic evolution of these as
well as its relation to the Brownian regime is still unknown.
KS has been reported to produce a Brownian regime for long
times [7], though it cannot give a conclusive answer for a dy-
namically evolving flow field.

For pure rotation, the Brownian regime seems not to go
back to a ballistic regime in RDT/SCH. Furthermore, the ver-
tical diffusivity in this model is exactly twice the horizontal
one [5], a ratio which is only marginally recovered for the non-
linear data at intermediate times.

TWO-PARTICLE DISPERSION

Two-particle dispersion is introduced by Richardson [1] as
the evolution of the distance from a fluid particle to an ini-
tially neighbouring one. It can be directly related to scalar
diffusivity and so is the basic quantity in turbulent mixing.

For two particles & and &’ the absolute two-particle disper-
sion is their separation squared (a(t) —a’(t))2. It is calculated
as a function of time and depends on the initial separation
8 = x(0) — 2’(0). The relative two-particle dispersion A is de-
fined as Ay;(t) =<w;(t) — x(t)>2 —52. No relation as easy as
Taylor’s relation for single particle dispersion can be found, as
two trajectories and the history of velocity correlations of the
two trajectories are involved. Therefore, analytical models for
two-particle dispersions are rare. We therefore only use KS
and DNS for the calculation of A, no analytical or RDT/SCH
model is presented.

We analyze exclusively the relative two-particle dispersion,
as the initial evolution of the separation is so small, that it
cannot be observed in the absolute two-particle dispersion.
The initial separation of the runs from KS and DNS is com-
parable and amounts to about half a Kolmogorov length scale
n. As for single particle dispersion, two-particle dispersion
in anisotropic turbulence depends strongly on the direction,
so we calculate A;; separately for the vertical and horizontal
directions.

Vertical two-particle dispersion is shown in figure 3 calcu-
lated with KS and DNS. A basic similarity between the two
curves exists in an initial ballistic separation, an intermedi-
ate transition and a final fast separation o t2 for dominantly
stratified cases to a very fast separation o t3 for dominantly
rotating cases. However, the similarity between KS and DNS
is not as complete as for the single-particle dispersion, illus-
trated by the difference in scales for figures 3(a) and (b). This
is in contrast with figure 1.

The vertical scalings in the graphs is similar to the one
used for single-particle separation multiplied by 62 in units of
the Kolmogorov length scale . With this scaling, all curves
of KS collapse in the ballistic regime with a transition occur-
ring at around T = 0.5 and normalized A2, = 0.02. The
collapse of the ballistic regime in DNS is less good. How-
ever, the transition occurs at approximately the same T = 0.5
and normalized A%S = 0.02 as in KS. After the transition,
DNS exhibits oscillations at the Brunt-Vaisala frequency for
DNSI, a very short plateau for DNSO and DNS0.1 and slower
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Figure 3: (a) KS and (b) DNS of vertical two-particle disper-
sion for different @ = 2€2/N. The dominantly rotating curves
are scaled with 2Q instead of N for the time as well as the
dispersion scale.

separation rates than t? for DNS10 and DNS-inf. The tran-
sition of KS shows qualitatively the same features, although
less pronounced. This can be an effect of the absence of a
nonlinear flow field in KS. Moreover, as two-particle disper-
sion depends on the history of trajectories, the fundamental
difference of a non-decaying flow field in KS and a freely de-
caying one in DNS might also explain some differences. This
suggests an increased importance of the dynamics of the flow
field for two-particle compared to single-particle Lagrangian
statistics.

KS with parameters comparable to DNS generally show
a reduced plateau due to the absence of coherent structures
in KS fields. As dominantly stratified turbulence has strong
horizontal vorticity, two particles at approximately the same
height, but horizontally apart, will be in two different horizon-
tal vortex structures. So their vertical two-particle dispersion
oscillates around a plateau, which size is connected to the size
of the structures. A recent topological argument for this by
[10] relates stagnation points to particle separation. The size
of the structures indeed seems to play an important role in the
plateau of DNS, as preliminary results of further simulations
show, when trajectories for two-particle dispersion are started
at significantly later times. Due to the decay of turbulence,
the velocity field at this time has both less energy and a larger
turbulent turnover time, producing a more stable flow field,
which vertically de-correlates the two particles less fast.

Contrary to Nicolleau & Vassilicos [7], a second plateau is
not observed in dominantly stratified KS. This is not neces-
sarily contradictory, as they used Froude numbers of 0.0034,
while in this work Froude numbers are of the order of 0.05.
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Our KS and DNS at lower Froude numbers exhibit this second
plateau (not shown). The length of the plateau is indeed not
only dependent on the size of coherent structures but also on
the Froude number [7].

The structure formation might also explain the compar-
atively slow long-time separation of the cases DNSO and
DNSO0.1 compared the case DNS1. The coherent structures are
strongly formed for dominant stratification while nearly non-
existent for DNS1. As no coherent structures can be formed
in KS, the dominantly stratified cases will undergo the same
linear processes as case KS1 and so evolve similarly. However,
this also means that a plateau observed in DNS potentially cre-
ated by a distribution of structures, and a plateau observed in
KS because of a strong confinement in the vertical are qualita-
tively different, the latter only being linearly driven buoyancy
oscillations.

The final period of evolution of two-particle dispersion
shows the most distinct differences between KS and DNS,
showing the increasing importance of nonlinear dynamics with
time. KS exhibits a very fast growing separation with a rate of
t3 and more for all parameters. The cases KSO and KS0.1 ac-
tually show a relative vertical separation which is larger than
the one from cases KS10 and KSinf. In DNS we observe sep-
aration rates in between t and t2 for cases DNS0, DNSO0.1
and DNS10 and slightly higher for cases DNS1 and DNS-inf.
Neither a Brownian regime nor absolute values close to sin-
gle particle separation are observed for any of the cases at
longest times. Furthermore, no second plateau is observed for
the two-particle dispersion in the dominantly stratified cases.
This might be due to too short integration times.

Horizontal two-particle dispersion is shown in figure 4(a) for
KS and figure 4(b) for DNS. A basic qualitative similarity can
be detected, which shows an initial ballistic behaviour and
certain qualitative changes in the rate of separation at longer
times.

The KS runs show an excellent agreement in the scaling of
the ballistic regime. A transition occurs at around tu/L = 0.1,
where the dominantly stratified cases KSO and KS0.1 follow
an evolution close to isotropic two-particle dispersion. This
means that a quasi-inertial range is observed with a separa-
tion rate close to t3 at times 1 < tu/L < 10 followed by an
evolution which tangentially approaches a Brownian t-law.

The cases KS1, KS10 and KSinf show a different long-time
evolution. They exhibit a t-law for times 0.1 < tu/L < 10,
which cannot be of Brownian origin, as the trajectories are not
de-correlated yet. The physical principle of the slowed down
rate of separation is yet unknown, but possibly connected to
similar observations concerning single-particle dispersion. A
transition to a t3-law or faster dispersion is seen at later times.
The purely rotating case undergoes this transition at around
tu/L = 20. The cases KS1 and KS10 exhibit a shorter range
for the t-law, then evolving parallel to the dominantly strati-
fied cases, although at a lower absolute value.

In figure 4 for DNS we see the initial ballistic regime for
all parameters. Compared to KS, the ballistic regime changes
to a transition region at significantly later times. In the tran-
sition region, the cases DNS10 and DNS-inf follow a linear
t-law evolution for a short time. At tu/L ~ 2 all runs exhibit
a t3-law, so later than in the isotropic run. A slightly slower
separation is observed for cases with rotation due to the ear-
lier linear evolution. Furthermore, contrary to the evolution of
cases KS10 and KSinf, DNS10 and DNS-inf evolve very simi-
lar. No Brownian regime is observed for long times, possibly
due to too short integration times.
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persion for different o = 2Q/N.

CONCLUSIONS
Lagrangian statistics of rotating and stratified turbulence

Particle trajectories in purely stratified turbulence are con-
fined to a vertical level for very long times as shown by
stochastic models [11], DNS [12], KS [7], linear models [6] or
experiments [13], even for weakly stratified turbulence. The
trajectories are oscillating and bounded by the potential en-
ergy. Vertical single-particle dispersion in purely stratified
turbulence therefore exhibits damped oscillations forming a
plateau, after an initial ballistic regime. The plateau is easily
related to the finite potential energy reservoir in the system.
However, the various studies with the different techniques do
not agree with each other on the evolution of the damped oscil-
lations and do not estimate the long time evolution of vertical
single-particle dispersion. The horizontal single particle dis-
persion is often assumed to be similar to isotropic dispersion.
However, we find quantitative differences for some of the hor-
izontal statistics.

In rotating turbulence no potential energy is available and
the particle dispersion is qualitatively similar to isotropic tur-
bulence. Slight qualitative differences, namely a a factor two
between horizontal and vertical dispersion, are found with a
linear model [5].

The role of nonlinearity in Lagrangian statistics

There is a paradox. In a stratified fluid the layering or
pancake dynamics, observed when looking at velocity snap-
shots [8] or single-time Eulerian statistics, is a nonlinear
phenomenon. How can linear theory predict anisotropy of
turbulent trajectories in two-time statistics? This applies also
to rotating turbulence.

Due to the lack of anisotropy in a linearly generated flow
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field [8], Lagrangian statistics include anisotropy of the flow
field exclusively through the trajectory equation, whose non-
linearity might be a substitute for the nonlinear advection
term in the Navier-Stokes equation. Over the Taylor hypoth-
esis, this also applies for two-time statistics of RDT/SCH.
If this is true, then Lagrangian statistics altered by instan-
taneous structures, such as two-particle statistics should be
influenced significantly by the absence of a nonlinear term in
the dynamical evolution of the flow field. This is partly con-
firmed by a different scaling in two-particle dispersion, without
final conclusive answers provided by KS or DNS. To be able
to follow up on this problem, a two-particle two-time RDT
velocity correlation model is needed.

Although universal scaling laws have been found for differ-
ent Lagrangian statistics, linear and nonlinear models scale
differently because of the different degrees of anisotropy in
their respective Eulerian statistics. This is a definite influ-
ence of nonlinear dynamics of the Eulerian field on Lagrangian
statistics, not included in either KS or RDT/SCH. DNS re-
sults show a nonlinear development of the velocity fields with
distinct anisotropies and structures formed, which depend on
«. The connection between coherent structures in instanta-
neous Eulerian fields and trajectories is therefore evidently
not possible without nonlinearities in the flow field. This
questions previous empirical attempts to connect Eulerian and
Lagrangian length scales, and suggests to revisit the existing
scalings, with a particular emphasis on the directional Eule-
rian statistics.

To achieve this goal, a Lagrangian parametric study us-
ing DNS of rotating and stratified turbulence is needed. Due
to the long simulation times needed to generate quality La-
grangian data, this involves a continuous cooperation with su-
percomputing centers, and we therefore want to thank equally
IDRIS (computing center of French CNRS) and CCRT (com-
puting center of French CEA).
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