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ABSTRACT

Spatial large-eddy simulations (LES) of forced transition
in plane channel flow are presented and compared to tem-
poral simulations. Using the fringe method, spectral Fourier
discretisation can be employed also in the streamwise, spa-
tially evolving flow direction. Various subgrid-scale (SGS)
models have been examined, including the dynamic Smagorin-
sky model, high-pass filtered (HPF) eddy-viscosity models and
the relaxation term model (ADM-RT). The applicability of the
fringe method in conjunction with a SGS model is discussed.
It is shown that all SGS models cause a significant improve-
ment of the results over a coarse-grid no-model calculation.
The most accurate prediction of transitional flow structures
is obtained using the ADM-RT model. The results also show
that the SGS models behave similarly in temporal and spatial
simulations.

INTRODUCTION

The ability to accurately simulate transitional flows using
large-eddy simulation (LES) would greatly improve the usabil-
ity of LES in many practical industrial applications in which
laminar-turbulent transition plays a crucial role, as e.g. flows
along airplane wings or in turbomachinery. It has already
been shown in a number of publications that the model prob-
lem of temporal transition in channel flow can be simulated
quite accurately by LES on a much coarser grid than needed
for a corresponding fully resolved direct numerical simulation
(DNS), see e.g. Germano et al. (1991) and Schlatter et al.
(2004c) and the references therein. Large-eddy simulations
of a spatially evolving transitional boundary layer have been
presented by Ducros et al. (1996) applying successfully the
filtered structure-function model. Recently, Schlatter et al.
(2004a) employed LES with a relaxation regularisation (ADM-
RT model, see below) to simulate forced temporal transition.
Comparison with DNS (Sandham and Kleiser, 1992) showed
a very good prediction of transitional flow structures like the
formation of A-vortices, hairpin vortices and the roll-up of the
shear layers.

The present contribution focuses on extending these stud-
ies to spatial transition, in which the disturbances grow in the
streamwise direction rather than in time. Whereas the simi-
larity of the spatial and temporal approach is well-established
for the early transitional stages and for developed turbulence
(Kleiser and Zang, 1991), there are differences during the
highly intermittent later transitional stages concerning the
physical flow structure and, possibly, the appropriate subgrid-
scale (SGS) modelling.
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SGS MODELLING

The governing equations for LES are the (spatially) filtered
Navier-Stokes equations for the non-dimensional velocity com-
ponents w; (i = 1,2, 3) and the pressure P,
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complemented with the incompressibility constraint
Ou;/0zx; = 0. The effect of the non-resolved small scales

enters through the SGS term 7;; := u;u; — u;u;, which is not
closed and must be modelled appropriately. The term FiF
arises from the fringe forcing which will be discussed in the
following section.

For the present results, a number of different SGS models
have been examined. All of these models have already been
tested in temporal K-type transition in plane Poiseuille flow
(Schlatter et al. (2004c); Stolz et al. (2004); Schlatter et al.
(2004d)) with the same spectral numerical method. In partic-
ular, eddy-viscosity models with the ansatz
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are considered. The dynamic Smagorinsky model has been
implemented according to Germano et al. (1991) and Lilly
(1992) with a three-dimensional second-order Padé test filter.
The eddy-viscosity is then defined as
v = (CsA)?S@)| , (4)
with the dynamic model coefficient Cg(x, z,t). The averag-
ing involved in the computation of Cg is performed in the
spanwise direction y only and negative values are clipped.
In the filtered structure function (FSF) model (Ducros
et al., 1996) the eddy-viscosity is given by

v = CFSFCI_(3/2A\/ F2(Ho x1,x,A) , (5)

with Cpgp = 0.0371 (Schlatter et al., 2004b) and the second-
order velocity structure function F» computed in the three-
dimensional 6-point formulation from the high-pass filtered
velocity field Hyo *uw = (I — G) * w. The definition of the fil-
ter G is given in Stolz et al. (2001) and its transfer function
@G is shown in figure 1. The cutoff wavenumber w. is de-
fined by G(we) = 1/2. For the present results, w. = 27/3
is used. The filter is defined on an implicit 5-point sten-
cil in physical space, and it is assured that all moments in
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Figure 1: Top: Transfer function of the filters used for the
SGS models: Low-pass filter G, —-—high-pass filter
Ho = 1 — G, =——-high-pass filter H5 = (1 — G)5. Cutoff

wavenumber w., = 27 /3. Bottom: Fringe function F(z) on
the subdomain [60, 100].

physical space up to second order are vanishing even for non-
equidistant grids, as e.g. used in the the wall-normal direction
of the channel. For this reason smooth (i.e. low-order poly-
nomial) flow profiles are virtually invariant with respect to
the filter operation and are thus small when high-pass filtered
with Hy := (I — G)Nt1, N > 0.

In contrast to classical eddy-viscosity models, the high-
pass filtered (HPF) eddy-viscosity models (Stolz et al., 2004)
compute both the strain-rate and the eddy-viscosity from the
high-pass filtered velocities, i.e.
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with the corresponding eddy-viscosity (HPF-SF model)

ViPF — CHEF O 32 A /Ty (Ho * 10, x, A)

(7)

and CHEF = 0.0405 (Schlatter et al., 2004b).

The ADM-RT model is based on the relaxation term (RT)
of the approximate deconvolution model (ADM) (Stolz et al.,
2001) presented in Stolz and Adams (2003) and Schlatter et al.
(2004c,d), where a regularisation term xHs * T; is employed
in the momentum equations (1),

OTij
Oz

=xHs *xw; . (8)
Here, Hs = (I —G)® denotes the high-order three-dimensional
high-pass filter (Stolz et al., 2001) respecting the boundary
conditions, see figure 1. x is a model coefficient, which is set
to a constant value herein. The ADM-RT model proved to be
accurate and robust in predicting transitional and turbulent
incompressible flows with spectral methods (Schlatter et al.,
2004c,d).
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NUMERICAL METHOD, BOUNDARY TREATMENT, AND
PARAMETER SETTINGS

The simulations use a standard Fourier-Chebyshev spectral
method with periodic boundary conditions in the streamwise
(z) and spanwise (y) directions together with no-slip condi-
tions at the solid walls (¢ = £1). The nonlinear convection
terms are computed with full dealiasing employing the 3/2-
rule in all spatial directions. No dealiasing has been used for
the SGS model terms.
forced exactly by an influence-matrix technique (Kleiser and
Schumann, 1980). Time advancement is achieved by a semi-
implicit Runge-Kutta/Crank-Nicolson scheme of third order
(Sandham and Kleiser, 1992).

To account for the spatially evolving flow a fringe region
has been added to the flow domain in the streamwise direction
similar to Bertolotti et al. (1992) and Nordstrom et al. (1999).
Within this region, which accounts for 20% of the streamwise
extent of the computational domain, the term

The divergence-free condition is en-

Ff = Ma) U —

7

(9)

in equation (1) forces the flow to return from the outflow pro-
file back to the prescribed inflow profile ;. The fringe function
is defined as A(x) = Ay - F(x) with F(x) given by Nordstrom
et al. (1999),
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The fringe function A(z) > 0 and thus the forcing term FiF
is non-vanishing only within the fringe region extending from
Tstart = 80 t0 Zeng = 100 for the present investigation. The
shape of the fringe function is further defined by Aise = 14
and Agy = 4 (see figure 1).

The inflowing disturbances are superimposed onto the lam-
inar Poiseuille flow and forced within the fringe region as dis-
tributed boundary conditions w; < U;(z,y, z,t). They consist
of a two-dimensional spatially evolving Tollmien-Schlichting
(TS) wave and two superimposed oblique three-dimensional
waves with the same temporal frequency wrg = 0.3 as the
two-dimensional disturbances. The amplitude of these distur-
bances is set to 6% and 0.2%, respectively, being twice as high
as the temporal reference simulation of Gilbert and Kleiser
(1990) and Schlatter et al. (2004c) in order to trigger tran-
sition earlier and thus to allow for a shorter computational
domain. These initial conditions excite standard K-type tran-
sition with an aligned pattern of A-vortices. The Reynolds
number based on the bulk velocity and the channel half-width
h is Rey, = 3333 (corresponding to Re, ~ 210 in the fully tur-
bulent regime). Statistical data has been averaged in y and
in time from ¢t = 200 to ¢t = 410, corresponding to 10 periods
of the initial T'S wave. The dimensions of the computational
box are 100~ X 3h X 2h. An overview of the flow development
within the computational box is shown in figure 2.

RESULTS

As a first step, the application of the fringe method to the
LES equations using a SGS model has to be examined. Several



Figure 2: Visualisation of the solution (A2) within the entire computational domain in a x,y-plane. The inflow is located on the
left, whereas the fringe domain 80 < z < 100 is appended on the right-hand side (see also figure 1).
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Figure 3: Evolution of the shape factor Hiz during transi-
tion using ADM-RT on 768 x 48 x 49 grid points, x = 25.
Ay =10, ====A; = 40, Ay = 100. Top: Full
domain. Bottom: Enlargement of the fringe region.
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Figure 4: Evolution of the shape factor Hi2 during transition
using ADM-RT on 512 x 32 x 33 grid points. X = 25,
Ap =40, ====x =50, Ay =40, ——x = 25, Ay = 10.

LES using the ADM-RT model have been performed varying
both the fringe strength Ay and the relaxation parameter x.
In figure 3, three simulations on a 768 x 48 x 49 grid are com-
pared for which A; was varied by a factor of up to 10 with
fixed x = 25. In the physically relevant subdomain z € [0, 80],
the shape factor Hiz nearly collapses for the different runs,
whereas in the fringe region x > 80 a higher Ay reestablishes
the laminar profile earlier, Hi2 ~ 2.5. At a lower resolution
of 512 x 32 x 33 grid points, figure 4 displays H12 for differ-
ent combinations of x and Ay, again showing no significant
discrepancies. Additionally, tests have been conducted with
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Figure 5: Streamwise velocity u close to the inflow at z =
—0.47 computed using =—==ADM-RT and no-model
LES on 512 x 32 x 33 grid points.

gradually reducing the influence of the SGS model within the
fringe region by setting 07;;/0x; = (1 — F(x))xHs * u;. It
was found that such a modification was not necessary for an
accurate prescription of the inflow conditions.

On the other hand, the application of the fringe method
without any SGS model (no-model LES) at the low LES res-
olution (512 x 32 x 33 nodes) caused the appearance of small
wiggles in the instantaneous velocity as shown in figure 5.
These wiggles are not present if a SGS model is used at the
same resolution. They are most likely caused by the underres-
olution in the later stages of transition and in the turbulent
part of the flow domain. Due to the global discretisation
scheme the wiggles are able to affect the whole flow domain.
By increasing the resolution, these artefacts are reduced grad-
ually and eventually vanish as soon as sufficient resolution is
reached in the turbulent part of the domain. Conversely, in
the LES these wiggles do not exist even at low resolution since
they are effectively damped by the SGS model.

It can thus be concluded that the fringe method provides an
efficient and accurate way to enforce inflow and outflow bound-
ary conditions also in the presence of a SGS model. Moreover,
it can be seen that the ADM-RT model is not very sensitive to
the choice of the model coefficient x (see also Schlatter et al.
(2004d) and Stolz et al. (2001)).

Transitional Phase

In figure 6 the evolution of the Reynolds number based
on the friction velocity Re, and the shape factor Hiz dur-
ing transition from the slightly disturbed laminar flow to the
turbulent state is shown for both the spatial and the tempo-
ral framework. The various spatial LES have been performed
with a resolution of 512 x 32 x 33 grid points, which corre-
sponds to 32 X 32 x 33 points for one period of the initial TS
waves, similar to the temporal LES (Schlatter et al., 2004c;
Stolz et al., 2004). It can be seen from the figure that all LES
are able to predict transition to turbulence. Compared to the
LES with an active SGS model and to the temporal DNS data,
the no-model calculation undergoes transition somewhat too
early in both the temporal and the spatial simulation. At this
resolution the no-model calculation is clearly underresolved,
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Figure 6: Evolution of the skin friction Reynolds number Re
and shape factor Hi2 during transition computed on 512 x 32 X
33 grid points in the spatial framework (Ay = 40) and in the
temporal framework on 32 x 32 x 33 grid points. ADM-
RT model with x = 25, dynamic Smagorinsky model,
—===FSF model, —-—HPF-SF model, no-model LES,
e temporal DNS (resolution 160 x 160 x 161 grid points).

which can also be seen in visualisations of the instantaneous
fields showing small wiggles in the velocities (see previous sec-
tion and figure 5). The qualitative behaviour of the different
models is quite comparable between the temporal and spatial
approach; i.e. the FSF model closely follows the no-model LES
at lower z (earlier times in temporal LES), and during later
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Figure 7: Streamwise velocity w for the one-spike stage at

z = —0.47. Top: Resolution 512 x 32 x 33, ADM-RT,
-------- dynamic Smagorinsky model, ——--no-model LES.
Bottom: Resolution 1024 x 64 X 65, high-resolution
ADM-RT, —==-no-model LES (low-resolution spatial DNS).

stages it seems to be too dissipative. The same conclusion can
be drawn for the dynamic Smagorinsky model, which however
provides a more accurate description of the earlier transitional
stages. It is interesting to note that in the spatial simulations
the typical overshoot of Re, during transition is predicted only
by the ADM-RT model with similar amplitude (ca. 15%) as
in the temporal DNS and the corresponding temporal LES.

Transitional Structures

Instantaneous velocity signals are displayed in figures 7 and
9 showing the typical low-velocity “spike” stages associated
with the transitional breakdown (Nishioka et al., 1975; Gilbert
and Kleiser, 1990). From figure 7 it can be inferred that the
one-spike stage is predicted accurately only by the ADM-RT
model at the present low resolution. Both the no-model sim-
ulation and the data of the dynamic Smagorinsky model do
not show this distinct early transitional stage at any time,
which is associated with the appearance of the first hairpin
vortex. However, by doubling the resolution to 1024 x 64 x 65
grid points, the one-spike stage becomes also visible in the no-
model data (low-resolution DNS), nearly collapsing with the
ADM-RT data.

For the ADM-RT model, the sequence of velocity signals
from the one-spike to the four-spike stage is shown in figure 9.
All stages can be clearly identified and are qualitatively similar
to those obtained by either temporal or spatial simulations
at higher resolutions (Sandham and Kleiser, 1992; Schlatter
et al., 2004a).

A visualisation of the instantaneous flow field by means
of the negative-A2 vortex-identification criterion (Jeong and
Hussain, 1995) is presented in figure 8 for some SGS mod-
els and resolutions at the two-spike stage. For all models,



Figure 8: Visualisation of the instantaneous vortical structures at the two-spike stage on 512 x 32 x 33 grid. (a) No-model LES,
(b) ADM-RT model, (¢) dynamic Smagorinsky model, (d) ADM-RT model on 1024 x 64 x 65 grid (high-resolution LES).

20 22 24 26 22 24 26 28

08 0.8

07 0.7,

0.6 0.6

0.5 0.5|

0.4 04

24 26 28 30 24 26 28 30
X x

Figure 9: Streamwise velocity @ for the various spike stages
at z = —0.47 computed using ADM-RT on 512 x 32 x 33 grid
points. The streamwise extent of the plotted region corre-
sponds to the streamwise wavelength of the TS wave. From
left to right and top to bottom: one-spike stage, t* = 0, two-
spike stage, t* = 4, three-spike stage, t* = 8, four-spike stage,
t* =10 (t* relative time).

the remainders (legs) of the A-vortices are visible at z ~ 19.
The no-model data does not show the two typical hairpin vor-
tices expected at this stage of development, and the flow field
breaks down to turbulence too fast without the appearance of
these distinct vortical structures. The data obtained with the
ADM-RT model for both resolutions shows distinct hairpin
vortices with comparable downstream evolution of the struc-
tures and spreading of the turbulent region from the peak
plane (y = Ly/2) towards the lateral boundaries of the do-
main. The dynamic Smagorinsky model also features some of
these structures, however they are not as distinct as for the
ADM-RT model. Especially further downstream (z = 35) the
former model is too dissipative as indicated by an apparently
coarser vortical structure present in the data. Note that with
the chosen low LES resolution the spanwise extent of the hair-
pin vortex is resolved by approximately 5 grid points only.

Turbulent Channel Flow

To confirm the accuracy of the LES in the turbulent stage,
the spanwise and temporally averaged mean velocity profiles
and Reynolds stresses are shown in figure 10 for the down-
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stream position z = 77 close to the fringe region (which
begins at x = 80). As a reference, the corresponding data
obtained from the temporal simulations are also shown. Al-
though turbulence is not yet fully developed at that position,
a close agreement between the temporal DNS and the ADM-
RT model can be observed. Moreover, the same qualitative
behaviour for the Reynolds stresses and the mean streamwise
velocity profile can be established for the various LES data ob-
tained from the spatial and temporal simulations (Stolz et al.,
2004; Schlatter et al., 2004c).

CONCLUSIONS

In this work, LES of spatial transition in plane channel flow
using the fringe method and various SGS models have been
presented. The results suggest that LES, in particular when
using the ADM relaxation term model, shows substantial im-
provement over no-model (underresolved DNS) computation
for both the prediction of the transition process as well as
for the turbulent statistics. Instantaneous vortical structures
(e.g. hairpin vortices) are also predicted well by the LES even
on a rather coarse grid. However, the different spike stages
are predicted correctly in detail only by the ADM-RT model.
The combination of LES with the fringe method did not raise
any difficulties even with a SGS model active within the fringe
region.

It has also been shown that the different SGS models ex-
amined in this contribution behave similarly for both the
temporal and the spatial simulation approach. Conclusions
based on temporal results therefore transfer readily to the spa-
tial simulation method, which is more physically realistic but
also much more computationally expensive.
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