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ABSTRACT

In our LES, an improved immersed boundary method and
a new one-equation dynamic SGS model was applied for ac-
curate simulation of complicated wall boundary of industrial
interest. Our computational results reasonably reproduced
previous data obtained by experiments and computations.
The results were able to represent the effect of flow geom-
etry: the flow around the mixing-vane causes the swirl and
the large-scale fluctuation enhancing heat transfer; turbulence
stress promotes the decay of the swirl more strongly than in a
pipe; but it produces a vortex in rod gap enhancing enthalpy
mixing between channels. These results suggested that LES
technique become a useful tool for designing the spacer grid
by predicting the effect of flow control.

INTRODUCTION

The mainstream is in the axial direction of bundled rods,
but the flow is distorted by spacer elements. As shown in
Fig.1, the mixing-vanes attached at the spacer grids produces
the swirl for enhancing heat transfer at the rod surfaces. To
upgrade the thermal performance drastically, the optimization
of swirl flow is necessary. For such a purpose, we believe the
numerical simulation is useful to predict the effect of mixing-
vane configuration on the flow and heat

Various efforts were thus made for the investigation about
the swirl downstream of grid spacers, for example: the cross-
sectional flow pattern was simulated well by RANS (In, 2003)
and was successfully visualized with PIV technique (Mc-
Clusky, 2002). However, we think that the swirl is much
affected by the turbulence stress and that RANS or experi-
ment is enough for the complete explanation. Our LES for
the flow in bare rod-bundle successfully reproduced the geo-
metrical effect that the turbulence energy in the main flow was
transferred largely into the circumferential direction in the rod
gap (Ikeno, et al., 2003a). The results indicated the possibility
of LES as a support tool.

The geometry characteristic of rod-bundle causes difficulty
in high-quality grid generation, due to azimuthally varying
channel-width as well as the complexity of spacer grid.
our previous work (Ikeno, et al., 2003a), an efficient numerical
procedure was developed for the immersed boundary method
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proposed by Mohd-Yusof (1997). Then we applied LES to the
fully-developed turbulent flow using the Cartesian grid system.
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Figure 1: (a) Computational domain and a part of grid (ev-
ery 8th grid is shown for each direction), (b) configuration of
spacer grids and the area (doted square) for spatial average.
This domain with periodical condition for every direction sim-
ulates a whole rod bundle. The coordinate system o — zyz is
used for instantaneous and O — xr6 for averaged results. The
main flow is in the x-direction.
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In this study, an improved immersed boundary method and
a new one-equation dynamic SGS model are introduced to im-
prove the accuracy of turbulence simulation in a complicated
wall-boundaries: a higher-order forcing method (Ikeno, et
al, 2003b) and a finite-difference formula of Poisson equation
(Ikeno, et al, 2004) for accuracy and consistency for velocity
and pressure; a dynamic procedure applied to the production
term in the transport equation of SGS kinetic energy (Ka-
jishima, 2003). Thus, our LES technique in couple with the
immersed boundary method is applied for investigation of the
geometry effect focusing on the development of the swirl.

NUMERICAL METHODS

The schematics of our immersed boundary method are
shown in Fig.2. Our method consists of the higher-order forc-
ing and the consistent correction as explained bellow.

Higer-order forcing method

In the immersed boundary methods, the following enforce-
ment is applied to the right-hand side of momentum equation
(Mohd-Yusof, 1997):

uptt —
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where RHS denotes the right-hand side of momentum equa-
tion; At is time increment. For the no-slip condition on the
wall, the desired velocity UZ.ThLl is given by the interpolation
between zero on the wall and the value at adjacent grid point.
We represent Ui"+1 as follows:

at x; = b;
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where x; and b; are the location vectors for the grid points
for the component-i on the staggered grid system. By apply-
ing the higher-order forcing method (Ikeno, et al, 2003b) to
3-dimensional geometry, the interpolation function ¢ (¢;) for

arbitrary flux ¢; is reduced as follows:
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where (I, J, K) represents grid number for b; and b; is set
at the grid point nearest to the wall. The coefficient A{ 9
is used for the interpolation for the component-i at the grid
point (I, J, K) between zero at wall and ¢; at the adjacent grid
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Figure 2: The schematics of higher-order and consistent im-
mersed boundary method. (a) Higher-order forcing to main-
tain the accuracy of velocity gradient at the wall. (b) Consis-
tent correction of fractional step to obtain the no-slip condi-
tion at a new time step. The forcing is applied to all of the
velocity components.
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(I+ f,J+ g,K + h). The higher-order method maintains the
accuracy of the velocity gradient at the wall by the forcing at
the points inside and outside the body, as shown in Fig.2(a).
The points of f,g,h = £1 and f,g,h = 2 are used for the
forcing outside and inside the body, respectively to avoid nu-
merical instability (Ikeno, et al, 2003b).

Consistent correction method

In order to maintain the mathematical consistency between
the numerical scheme and physical no-slip condition, we have
derived the following procedure for time integration (Ikeno, et
al, 2004). Firstly, the fractional step uf is obtained by solving
the following equation:
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where ¢, indicates central difference; H; includes convective
term and SGS stress term; the energy-conservation formula of
the second-order finite-difference method (Kajishima, 1994)
is particularly applied to the former; ¢ (x; — b;) is the delta
function (denotes 1 when x; = b;, otherwise 0); G; is the
pressure gradient to drive the flow. Equation (4) is based on
the Crank-Nicolson method for molecular viscous term and the
Adams-Bashforth method for nonlinear terms. By storing the
coefficients of the left-hand side prior to the time-integration,
the procedure of categorization and interpolation for desired
velocities is not required in each time step. This improves the
efficiency of LES in extremely complex geometries.

If every stencil in Equation (4) does not include the im-
mersed boundary (x; # b;), Equation (4) represents usual
momentum equation. On the other hand, if any stencil in
Equation (4) includes the immersed boundary (x; = b;), it
represents the fractional step for the desired velocity:

Ul = (uf)

Then the pressure gradient is added to advance a time step
as follows:

at x; = b; (5)

u;(”rl =ul’ — At[1 — 8 (x; — by)] 8z, p"

— Atd (x; —by) @ (6xip"+1) (6)
This equation maintains the no-slip condition on the wall by
reducing Equation (5) to Equation (2). Hence, p in Equation
(6) is obtained by solving the following Poisson equation:

536]' (S:ijn+1 - 6$L' [6 (x’i - b’L) (1 - 410) 6x'ipn+l] =

which is derived by the continuity restriction ( d.; u?Jrl =0).

In Equations (4), (6) and (7), all spatial derivatives are
approximated by the central difference formula of the second-
order accuracy. The time integration is by the first-order
fractional step method; this accuracy cannot be improved by
any modification of boundary condition for fractional step uf
(Perot, 1993). The idea of our method is not an attempt
for improving such temporal accuracy but for maintaining the
consistency between the no-slip condition and the treatment



for velocity and pressure. Fig.2(b) indicates that such con-
sistent pressure gradient corrects the pseudo no-slip condition
for fractional step into the actual one for the new step. For
example, the result of LES without the second term in the
left-hand side of Equation (7) indicated higher flow rate be-
cause the immersed wall permits flow penetration due to the
pressure gradient affected incorrectly by the solid body (Ikeno,
et al, 2004).

In this study, Equations (4) and (7) are solved by successive
over relaxation (SOR) method within 50 iterations. In this
case, we confirmed the ratio between the norm of residual and
that of the right hand side is approximately 10~°. Since the
second term in Equation (7) modifies the diagonal component
of coefficient-matrix, the SOR method requires much iteration
numbers until the convergence to machine-zero. However, we
think SOR is one of the best selections, considering a minimum
memory and numerical stability.

NUMERICAL RESULTS
The Reynolds number based on bulk velocity wm, rod pitch
P and kinematic viscosity v is approximately 4100. To main-
tain the Reynolds number around this value, adjusted values
are given for the pressure gradient in Equation (4):
Gi = 45i1u3/DH (8)
Here, 6;1, ur and Dy are Kronecker delta, average friction
velocity and the hydraulic equivalent diameter, respectively.
The following results are normalized by P for length and ur
for velocity.

Drag coefficients

The drag coefficients are calculated and compared with ex-
periments in Fig.3. The drag coefficient in rod-bundle is based
on the pressure loss obtained by subtracting the friction loss in
bare rod-bundle from total loss in rod-bundle with spacer grid
(Rehme, 1973). The friction loss was discussed in our previous
work (Ikeno, et al, 2003a). We calculate the drag coefficient
using the bulk velocities for this study and for bare rod-bundle
of the same computational condition: one-equation dynamic
SGS model (Kajishima, 2003), mesh spacing and pressure gra-
dient. The grid spacer used in the experiment of Yang (1996)
is a split-vane type as is simulated in our LES; but that of
Rehme (1973) is different from both Yang’s and ours. How-
ever, the data is useful for the comparison because it covers
low Reynolds number region for Yang’s (1996). Our numerical
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Figure 3: Comparison of form loss coefficients between LES
and experiments. The result of LES includes various mesh
numbers: 128 X 64 x 64, 256 x 128 x 128 and 512 x 256 X 256
for x, y and z direction.
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Figure 4: Instantaneous velocity vectors around the spacer
grid. (a) 3-dimensional vectors (u,v,w) in the x — z plane
at y = 0.18 across a mixing-vane (every 2nd grid is shown).
(b) 2-dimensional vectors (u,v) in the x — y plane at z = 0.11
across a mixing-vane (every grid is shown).The reference arrow
indicates 25ur.

results converge to the experimental results as the mesh reso-
lution becomes fine. Hereafter, we use the result of the finest
mesh resolution: 512 x 256 x 256 for z, y and z direction.

Velocity field around the spacer grid

The instantaneous velocity vectors are shown in Fig.4.
Fig.4(a) indicates that the swirl observed is caused by the
flow around the mixing-vane. This swirl contains large-scale
fluctuation and affects the downstream turbulence. The scale
of this unsteady phenomenon is important because it will pro-
mote heat transfer on the rod surface. As shown in Fig.4(b),
the velocity field around a inclined plate is captured reason-
ably by our immersed boundary method and any numerical
disturbance is not observed.

Mean streamwise velocities

Axial variations of mean streamwise velocities are shown in
Fig.5. Hereafter, mean values are those averaged temporally
during 5t* after the flow developed and spatially in the area
shown in Fig.1(b) for adjacent congruent area.
dimensionless time normalized by P/u,. The time increment
is 0.0001t*. The points at r > 0.357 are inside the rod. The
planes at x = 2.3 and * = 5.1 are insides the strap of the
spacer grid: the values for 0 and 90 degrees are zero inside
the body; the flows for 45 and -45 degrees are faster than
those in any elevations because of the acceleration through the
suddenly narrowing channel in the grid spacer; the position
of local maximum of velocity is close to the corner between
crossing straps at x = 2.3 and to the rod surface at x = 5.1.
The plane at * = 6.5 is midpoint of the mixing-vanes: for
0 and 45 degree, the velocity profiles are sink at the center
by the effect of strap upstream; for 90 and -45 degrees, the
flow is slow behind the mixing-vane; especially the flow for 90
degrees is locally accelerated in the narrow region between the
rod and the tip of mixing-vane. The planes from x = 7.9 to
x = 22 are downstream of spacer grid: the profiles for 0 and 90
degrees and for 45 and -45 degrees approach those in shear-free
condition and those in no-slip condition, respectively.

Here, t* is



Turbulence intensities

Axial variations of turbulence intensities are shown in Fig.6.
The turbulence intensity is based on the deviation from the
corresponding component of mean velocity. The streamwise
components are dominant at £ = 2.3 and z = 5.1: the values
for 0 and 90 degrees are zero inside the body; the streamwise
components for 45 and -45 degrees are strong in the center at
x = 2.3 because of the fast flow attacking to the strap and are
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Figure 5: Axial variations of mean streamwise velocities: .
0 = (a) 0, (b) 90, (c) 45 and (d) -45 in degree.

diffused downstream at x = 5.1. The turbulence stresses are
generally isotropic at * = 6.5: active turbulence diffusion is
retrieving the velocity profile; especially the lateral fluctuation
around r = 0.3 for 90 degrees corresponds to the origin of the
swirl near the tip of a mixing-vane. From « = 7.9 to « = 22,
the profiles for 0 and 90 degrees and for 45 and -45 degrees
approach those in shear-free condition and those in no-slip
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Figure 6: Axial variations of turbulence intensities: 1/u/2

u_’T2 and u92 indicated by UR, UNR and UTR, respectively.
0 = (a) 0, (b) 90, (c) 45 and (d) -45 in degree.
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condition, respectively.

Decay of swirl

Mean lateral flow pattern is shown in Fig.7. The flow pat-
tern is generally similar to the results of the computation by In
(2003) and the measurement by McClusky (2002). This flow
pattern is that of the swirl downstream of spacer grid. The
arrangement of mixing-vanes in our LES is the same as that
in McClusky (2002): it isolates the swirl in a channel among
4 rods. The swirl decreases as a function of the distance from
the mixing-vanes. The prediction of this decrease rate is quite
important to evaluate heat transfer at the rod surface.

Axial variation of mean angular momentum is shown in
Fig.8. In this figure, the result of our LES is compared with
experimental results for the swirl in a rod-bundle (McClusky,
2002) and in a pipe (Kreith and Sonju, 1965). The definition
of angular momentum is:

Q://Sru_gdS///SdS

where S is the region bounded by the circle: » < 0.35. The
LES agrees well with the experiment for the rod-bundle. The
decrease in rod-bundle is significant near the mixing-vanes,
but camparable data is not found in the experiment. The de-
cay of the swirl in a rod-bundle is faster than that in a pipe.
We think this is the effect of turbulence stress. McClusky
(2002) investigated the lateral velocity profiles of decaying
swirl by using an analogy with Lamb-Oseen vortex but did
not show the contribution of turbulence stress. Our LES can
provide such data and we discuss the decaying swirl by devel-
oping his approach.
F—

(9)

(b)

Figure 7: Mean lateral flow pattern downstream of spacer grid
at (a) x = 8 and (b) x = 16 (every 5th grid is shown). The
reference arrow indicates 2u.
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Figure 8: Axial variation of mean angular momentum: €.
The angular momentum is normalized by the value at =
6.3Dg /P. The result of LES ranges from the top of mixing-
vane to the bottom of strap.
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Table 1: Constants for Lamb-Oseen votex

X o 1/4vt
79 14 20
94 1.2 18
15 0.8 14

DISCUSSION

Axial variations of mean azimuthal velocities and circula-
tions are shown in Fig.9. The data at x = 7.9, 9.4 and 15
are selected to show typical parts of developed swirl. In this
figure, the results of LES are compared with those of Lamb-

Oseen vortex:
(1 _ 6—7‘2/4ut)

where I'g is the circulation at the limit of radial infinity
(Saffman, 1992). The values of T'g and 1/4vt are adjusted for
the curve to fit the result of LES. The adjusted values normal-
ized by P and ur are shown in Tablel. The decrease in I" and
1/4vt in the downstream direction is caused by the turbulence
stress. In addition, Lamb-Oseen vortex cannot reproduce the
profiles in the outer region. This discrepancy is due to the
difference in the boundary conditions; namely, no-slip for the
rod wall and shear-free for the rod gap in our case.

In order to consider the effect of turbulence stress and
boundary condition on Lamb-Oseen vortex, we formulate the
circulation for viscous and turbulence stresses. Assuming that
the mean velocities are symmetric on channel center and in-
dependent on axial direction, the momentum equation for the
mean azimuthal velocity becomes:

82u0 1 8u9 Ug
=V + —_ -
or2 r or r?
Assuming the steady state and multiplying by 72 derives:

vol, 0 (., dug\ 0 (ot
- (r VW —E(T urue)

or or  or
where I'y = 27rug. By this definition, the circulation of the
swirl shown in Fig.9 is represented by a negative value of I'.
Equation (12) indicates that the diffusion of angular momen-
tum balances with that of viscous and turbulence stress. To
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Figure 9: Axial variations of mean (a) azimuthal velocities:
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clarify this effect on the circulation of Lamb-Oseen vortex, in-

tegrating Equation (12) and letting Iy, dug/dr and u;u/e —0
as r — 0 based on the radial symmetry derive:

oug 1—FF
Iy = 27r? (ﬂ — —u;u;)
v

o (13)

This formulation is useful for the discussion about the effect
of turbulence stress and boundary condition.

The contribution of each term in the right-hand side of
Equation (13) is shown in Fig.10. The diffusion by viscous
stress becomes evident near the rod wall for 45 degrees and
in the rod gap for 0 degree. The contribution of turbulence
stress for O degree is different from that for 45 degrees. For
45 degrees, the turbulence stress contributes negatively near
the rod wall; this corresponds to the positive correlation of u;
and u;: u; > 0 in the swirl produces u; > 0 decelerating the
swirl; the angular momentum of the swirl is diffused at the
rod wall vertical to the radial direction; this is the same for
the swril in a pipe. For 0 degree, the contribution in x = 7.9
is different from that in « = 9.4 and 15. In the downstream
(z = 9.4 and 15), the turbulence stress contributes positively
near the rod gap; this corresponds to the negative correlation
of u; and u;: u; > 0 in the swirl produces u; < 0 promoting
the swirl; the radial component of the angular momentum is
transferred azimuthally at the curved rod wall not vertical to
the radial direction. In the upstream (x = 7.9), the turbulence
stress contributes negatively in the core region; this positive
correlation of u; and u/o is a result of the balance of angular
momentum distributed between the swirl in the core region
and the vortex in the rod gap (see Fig.7(a)). We think this is
the main reason for the swirl in rod-bundle decays faster than
that in a pipe.

CONCLUSION

We carried out an LES of swirled turbulent flow in rod-
bundle. In order to treat complicated geometry, we used an
improved immersed boundary method and a new one-equation
dynamic SGS model. The complex geometry effect on the
velocity field was accurately simulated by means of the im-
mersed boundary method with the higher-order forcing and
consistent correction. The new one-equation dynamic SGS
model was useful for this complex geometry because the dy-
namic procedure requires neither the near-wall correction for
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SGS viscosity nor the average of dynamic parameter.

The computational results reasonably reproduced previous
data obtained by experiments and computations. The results
were able to represent the effect of flow geometry: the flow
around mixing-vanes causes the swirl and the large-scale fluc-
tuation enhancing heat transfer; turbulence stress promotes
the decay of the swirl more strongly than in a pipe; but
it produces a vortex in rod gap enhancing enthalpy mixing
between channels. Our formulation for the viscous and tur-
bulence stresses was useful for the developed swirl and will
be for the swirl indicating significant decay near the mixing-
vanes. These results suggested that LES technique become
a useful tool for designing the spacer grid by predicting the
effect of flow control.
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