LARGE EDDY SIMULATION
OF OBLIQUE FLOW PAST A CUBICLE OBSTACLE

Demetri G. Bouris
Department of Engineering and Management of Energy Resources
University of Western Macedonia
Kastorias & Fleming 1, 50100, Kozani, Greece
dmpouris@uowm.gr

Andreas P. Theodorakakos
Fluid Research Co.
Laskareos 49, 11472, Athens, Greece
fluidresearch@in.gr

ABSTRACT

Oblique flow past a cube or low rise structure is of importance
in designing and constructing structures and buildings, among
other applications. In the present study the large eddy simulation
(LES) methodology is applied on an unstructured grid with
locally refined resolution in order to study the surface pressure
field and the conical vortices that develop on the roof of a low
rise cubicle. Three simulations are performed, evaluating the
effect of temporal and spatial resolution and results are
compared to experimental measurements and to a point vortex
theory for the conical vortex structure. Spatial resolution is
found to be of importance in correct representation of the
conical vortex structure as well as the high frequency spectrum
of the roof-top pressure fluctuations.

INTRODUCTION

The goal of achieving wind resistant structures and buildings
continues to play an important role during the design and
construction phase, especially in areas that are susceptible to
high wind velocities or instantaneous gusts of winds. An
especially complex condition arises when a cube shaped
obstacle or low-rise structure with a square roof is placed under
an oblique incident flow as strong conical vortices are formed
on the leading edges of the roof. Experimental studies (Kawai
and Nishimura, 1996, Marwood and Wood, 1997) have proven
that their behavior is of a complex fluctuating nature and that
large values of instantaneous negative pressures appear. The
advantage of accurate numerical simulations of this condition is
obvious but it has proven to be quite difficult since most studies
published using steady state calculations with the k-¢ turbulence
model fail to reproduce even the conical vortices. Specifically
tuned modifications to the standard k-¢ model such as the
Murakami-Mochida-Kondo (MMK) model (Tsuchiya et al.,
1997) have also appeared, providing some improvement but still
unable to reproduce characteristics of the unsteady flow.
Relatively recently, large eddy simulations of the flow in
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question have also begun to appear in the literature, although
with a high calculation cost and unresolved issues related to
discretisation, subgrid scale modelling and Reynolds number
independance. Thomas and Williams, (1999) presented LES
calculations of the 45° skewed flow past a surface mounted
cube. They used multi-grid domain decomposition and MPI
parallel programming in order to attain reasonable computing
times with 32 grid cells on the cube sides and a total of 8-10°
nodes in the computational domain. Two LES calculations of
the same oblique flow past a cubicle, whose height was half that
of the other two dimensions, have also been presented (Tamura
et al. 1997). The two simulations differed in Reynolds number,
convection term discretisation scheme and subgrid scale model
and their results were so different that the effect of the subgrid
scale model and the convection term discretisation was further
investigated, although not for the case of the oblique flow.
Furthermore, although the calculations and experiment to which
they were compared were at different flow Reynolds numbers,
the matter of Reynolds number independence remained
unresolved. In the present study, the oblique, 45°, flow past a
cubicle obstacle is calculated using a large eddy simulation. An
unstructured grid is used in order to minimise computational
effort while still achieving sufficient detail in the simulation.
Parameters such as the temporal and spatial discretisation are
investigated through variation of the time step and local
refinement of the grid in the regions of the conical vortices’
development. Results are compared with available experimental
measurements of pressure coefficient distribution and
fluctuation on the surfaces of the obstacle.

NUMERICAL METHODOLOGY

The governing Navier - Stokes conservation equations of the
flow field are numerically solved on an unstructured grid,
following the finite volume approximation and a pressure
correction method. The time dependent mass and momentum
equations are expressed for an arbitrary coordinate system and



for cartesian velocity components. The mass conservation
equation is:

%+V~pﬁ=0 (1)

where (p) is density, (t) time and () the velocity vector. The
momentum conservation equation is

2
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where ®is the vector product, (T ) is the stress tensor, (P) the
pressure, (L) the effective viscosity of the fluid, (T) is the unit

tensor and (S, ) represents the added source terms. The effective
viscosity is defined according to the Smagorinsky model
(Smagorinsky, 1963):

s =H b ®
i, =p(C,A)4S-S, S=Vei+(Vei)

where (p) is the fluid dynamic viscosity, (S;) is the strain rate,
(A) is a length scale, taken here as the cubic root of the cell
volume and (C,) a constant equal to 0.1.

The transport equations are integrated and discretised over the
common control volume following the finite volume method.
The grid that is used for the present case is an unstructured
mesh, where every cell has an arbitrary number of faces and
neighboring cells. In this way, no special treatment is needed
when applying local refinement to a region. The grid
arrangement is collocated, where all the unknown variables are
stored in the center of the computational cell. In order to avoid
pressure - velocity decoupling problems, arising from the fact
that pressure and velocities are calculated in the same location,
the convective flux through each cell face is calculated using a
modification based on that of Rhie and Chow (1983). The key
feature of this approach is that the velocity used to calculate the
convective flux through a cell face, is not calculated by a linear
interpolation of the adjacent cells velocities, but is modified to
be directly linked to the two adjacent pressure nodes. Following
this procedure, a pressure prediction - correction method
(resembling the well known SIMPLE algorithm of Patankar and
Spalding, 1972) is used in order to derive the pressure equation
from the continuity equation. In the present study, in order to
avoid problems related to numerical damping often associated
with upwind schemes, all terms are discretised using the
standard second order central difference scheme. For temporal
discretisation, the second order semi-implicit Crank Nicholson
scheme is used. The set of the linear equations that result after

the discretisation of the conservation equations, are solved based
on an LU decomposition, although in some cases switching to a
GMRES solver provided better stability.

RESULTS

In the present study a large eddy simulation of oblique (45°)
turbulent flow past a half-height cubicle obstacle (dimensions:
0.2x0.1x0.2 m) is performed on a fully unstructured
computational mesh. The Reynolds number of the flow is 6450,
based on the uniform upstream velocity (U,) and the side of the
roof (2h) (h is the height of the obstacle), a value also used in
the calculations presented in Tamura et al. (1997). Although the
experimental measurements’ Reynolds number was an order of
magnitude higher, it is assumed that the main characteristics of
the flow, with the exception of the peak negative pressure
coefficients on the roof, will retain similarity. Similarity of the
rooftop pressure distributions is also mentioned in the original
work of Castro and Robins (1977) for turbulent flow past a
cube.

Extra care was taken to construct the grid so that both the no-
slip condition could be implemented and the wall function
assumption avoided while keeping the number of grid points
relatively low. The use of the unstructured mesh helps in this
direction aided by the use of a locally refined grid at specific
regions of the flow, as will be described later in the paper. For
use of the no-slip condition, the largest distance of the nearest
grid point to the obstacle was h/100, giving a mean y'<2 on the
roof. The initial grid consisted of 380,000 hexahedral cells with
40 cells defining the side of the obstacle. The grid defined
length scale (A) near the surface of the obstacle is slightly below
the value of the Taylor length scale, estimated from
A=h-(15/Re;)*’ (Tennekes and Lumley, 1974). This provides a
sufficient spatial resolution, as verified by the SGS viscosity
values, which were found not to exceed a value of 3-4 times that
of the fluid dynamic viscosity.

The effect of grid size was evaluated in a calculation with a
locally refined region where the conical vortices develop i.e.
from the upstream corner to the rear edges. The discretisation in
this region was doubled in each direction by dividing each cell
in that region into 8 smaller ones, resulting in a total grid size of
480,000 hexahedral cells. Close ups of the region near the
cubicle for both the grids that were used are shown in Figure 1.
It has been mentioned in the literature (Murakami, 1998) that
grid non-uniformity could cause numerical oscillations since the
cut off wave number (A), which is dependent on grid size,
changes abruptly. This might be the reason that attempts to
perform the calculations at a higher Reynolds number lead to
severe instabilities in the numerical procedure. In the present
calculations, no oscillations were detected, at least not in the
wall adjacent regions where results are presented.

Two time steps were also used for the calculations i.e. dt=5.E-
4 sec and dt=5.E-3 sec. For the larger of the two time steps and
the locally refined grid, the maximum CFL number was 1.4 and
the computational cost was 6.5 time steps/hour on a 2.6 GHz P4
personal computer using ~500 MB of RAM.

The present study aims to take advantage of the unstructured
grid in order to resolve small scale structures near the obstacle
and to numerically reproduce the characteristics of the conical
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vortices’ development that have been experimentally observed.

As an initial condition, a steady state k-¢ simulation was
performed. From this steady state solution, the large eddy
simulation studies began with a steady, uniform incoming flow,
slip conditions (i.e. zero 1% gradient) for the top and side
boundaries and constant 1¥ gradient in the flow direction for the
outlet. The boundary conditions were considered acceptable
considering the distance of the computational domain
boundaries from the obstacle: 7.5h and 12.5h upstream and
downstream respectively and 10h above and on either side of the
obstacle. Three different simulations were performed: one with
the grid resolution shown in Figure 1b and a time step of dt=5E-
3s, another with the same grid resolution and a time step of
dt=5E-4s and a third with the locally refined grid shown in
Figure 1a and a time step of dt=5E-3s. The three simulations
will be compared to the experimental measurements and the
respective steady state calculations using the MMK model
presented in Tsuchiya et al., (1997) and to the experimental
measurements of Kawai & Nishimura (1996). It should be
mentioned that for all LES calculations, mean values were
calculated by averaging flow results for at least 25 large eddy
turnover times (h/U,). Longer calculation times would mainly
lead to improvement in the resolution of turbulence statistics and
very low frequencies. Computational cost was the basic
parameter preventing further calculation and insight into low
frequency fluctuations but the present level of resolution was
considered adequate for evaluating the effect of time step and
grid resolution as well as acquiring information regarding the
characteristics of the conical vortices.

Snapshots of the calculated vortex development and shedding
are portrayed in Figure 2 using iso-pressure surfaces based on
the pressure coefficient C, =(P—P,)/ (0-5PU§) with (P,) the
upstream static pressure at the inlet and at the cubicle height. It
is interesting to note how the conical vortex from the leading
edge of the right hand side (negative x direction) of the roof of
the cubicle develops downstream where it interacts and is
trapped by the recirculation zone of the vertical side edge.

As an indication of the highly varying pressure values arising
from the unsteady nature of the conical vortices on the roof of
the obstacle, the instantaneous distribution of the pressure
coefficient, at a distance of one cube height from the leading
corner and in a direction perpendicular to the flow, has been
plotted in Figure 3 for a number of time steps corresponding to a
total of 10 large eddy turnover times (10h/U,). The results are
from the calculation without local grid refinement and with a
time step of 5E-3s. The highly varying peak values of the
pressure coefficient are obvious and their position on the roof is
relatively constant in time indicating that the swaying motion
has not been reproduced. Simulation of the vortex swaying
observed by Kawai (2002) would require very long calculation
times and the present study was not extended in this direction.
However, as will be shown following, the high frequency
fluctuation seems to have been well represented.

Regarding the structure of the vortices, results are presented
in Figure 4 comparing with experimental measurements and a
point vortex theory according to Kawai and Nishimura (1996).
Assuming a non-viscous point vortex at a distance of z,,,, from
the top surface of the cubicle and with the vortex axis parallel to
the cubicle’s roof, the pressure distribution can be calculated as:

397

AC,
AC

SR R

Pmax

Eq. (4) requires an alternative coordinate system on the roof
plane, as indicated in the illustrative figure in Figure 4, where
(0) is the direction perpendicular to the side of the roof (s) and
0=0 at AC, s« (b) is the half width i.e. the distance in the (3)
direction where the pressure profile reaches half the maximum
value. If the mean pressure coefficient distributions in the
direction perpendicular to the side of the roof (o) are expressed
in this coordinate system, then a similarity law is found to exist.
The results for the three different calculations are presented in
Figure 4. For all three calculations, the profile of the mean
pressure coefficient is very close to the experimental
measurements and the point vortex theory in the downstream
positions, where the vortices have already developed
significantly. In the region close to the leading corner of the
cubicle, the two calculations without the local grid refinement
(Figure 4a and b) exhibit a discrepancy in relation to the
measurements and the theory. Judging from the results of the
case with local grid refinement (Figure 4c¢) it can safely be stated
that this is a result of limited spatial resolution in a region of
significant flow development and instability. Refining the grid
leads to a remarkable agreement with theory and experiments. It
should be reiterated here that the flow Reynolds number in the
calculations is an order of magnitude lower than in the
experiments and yet the similarity law describing the structure
of the vortices still holds, even compared to a non-viscous point
vortex theory.

More detailed comparison is shown in Figure 5 - Figure 7
where calculated mean pressure coefficients are plotted for all
three presently performed LES calculations, the experimental
measurements presented in Tsuchiya et al. (1997) and the
calculations using the MMK model also presented in Tsuchiya
et al. (1997). The MMK model is a k-¢ modification which aims
at reducing the excessive production of turbulence kinetic
energy by introducing a modified expression for the production
term as a function of strain rate and local vorticity. The
differences between the three LES calculations are not very
pronounced although one would have expected it considering
the improvement brought on by the grid refinement in the
pressure profile similarity calculations (Figure 4). Furthermore,
the peak pressure value is underestimated in the distribution on
the top of the roof (Figure 7). One possible explanation for this
might be that the Reynolds number of the experimental
measurements is almost an order of magnitude higher than that
of the simulations. Although the similarity law is correctly
reproduced, the absolute peak value might be more strongly
related to the upstream flow Reynolds number. Another
important point that should be made is the fact that all three LES
calculations correctly reproduce a local maximum of the peak
negative pressure coefficient at a distance from the edge of the
roof instead of at the edge as does the MMK model, for
example. However, the MMK model did exhibit the correct
behavior for smaller angles of attack (0°, 22.5°).

Further insight into the structure of the conical vortices can be
gained from Figure 8 which portrays the calculated mean flow
field, for the calculation with the locally refined grid, on a plane



normal to the main flow direction (xy) passing through the
center of the cubicle (z=0). The vortex cores are clearly
discernible from the position where the transverse velocity
changes sign. Their elevation from the roof has been calculated
from a number of similar planes perpendicular to the flow (not
shown for lack of space) as being constant along the roof and at
16% of the cube height. For a 45° angle of attack, Marwood and
Wood (1997) measured an elevation of 11% the cube height.
From the point of peak negative pressure for the profiles
presented in Figure 4c¢ the angle of the vortex axis relative to the
side of the roof can also be calculated. This was found to be
10.5° as compared to 12.8° measured by Kawai and Nishimura
(1997). A possible reason for the discrepancy in both the
calculated elevation and the angle of the conical vortices is that
the Reynolds number of the experimental measurements is an
order of magnitude higher with the flow possibly pushing the
vortices inwards from the edge and down towards the roof.

Looking into the level of resolution in the high frequency part
of the pressure coefficient fluctuation, we arrive at Figure 9.
Here the fluctuation of the pressure coefficient is taken from the
LES simulation by subtracting the local mean value from the
instantaneous one and then the power spectral density is
calculated in non dimensional form and plotted against non-
dimensional frequency:

psp_ LSO g _f:2n )
0.5pU> U,

where S(f) is the absolute value of the Fourier transform of the
time series. The experimentally obtained spectrum by Kawai
and Nishimura (1996) is also plotted in Figure 9 for comparison.
Figure 9a shows results for the calculation using dt=5SE-3s and
the grid without local refinement. The energy levels seem to be
correct but the slope in the high frequency range is not the same
as the (-5/3) slope measured in the experiments and indicated by
a straight line in the figure. The lower frequency portion of the
spectrum has not been reproduced since it is a function of total
calculation time, as is the resolution in the frequency spectrum.
Reducing the minimum resolved frequency by half would
require doubling the total number of time steps calculated. With
the locally refined grid and the same time step (Figure 9b), the
slope in the high frequency range is closer to that measured in
the experiments, indicating a better resolution not only of the
energy level in the high frequency fluctuation of the roof-top
pressures but also the correct energy distribution. The energy
level in the low frequency part of the spectrum seems to be at
the correct level, although a better resolution is desirable in this
region. Besides the matter of the long computational time, it is
important to mention that an attempt to explain the low
frequency swaying of the vortices has led to the quasi steady
theory (Marwood and Wood, 1997). According to this, the
swaying is a result of the variation in attack angle due to
upstream turbulence (see also Kawai, 2002) and the vortices
respond to this as if all of the mean upstream flow had changed
direction. In a simulation with a steady, uniform upstream flow,
this may be the reason that vortex swaying was not observed.
An interesting numerical experiment would be to introduce an

upstream fluctuating field in order to determine its effect on the
vortex behaviour.

If the observations concerning the frequency range are
combined with those mentioned previously for the mean
pressure coefficients, then one could justify the improved
reproduction of the conical vortex similarity law by the correct
reproduction of the high frequency spectrum. However, it is
important to note that in LES this requires both adequate
temporal and spatial resolution and it is to this effect that
unstructured grids, local grid refinement techniques, or both, can
be effectively used.

CONCLUSIONS

Large eddy simulation of the flow at a 45° angle of attack to a
cubicle obstacle of dimensions (2h, h, 2h) is performed on a
fully unstructured mesh. The temporal and spatial resolution
have been evaluated by employing two time steps, an order of
magnitude apart, and a locally refined grid in the regions where
the conical vortices develop. Results indicate that the effect of
the locally refined grid is significant in the correct reproduction
of the form of the conical vortices through comparison with an
experimentally confirmed similarity law. This could be
attributed to the improved resolution of the high frequency
spectrum, as observed by prediction of the power density
spectrum.

With regard to numerical matters, it is reiterated that the
importance of spatial resolution, especially in LES, cannot be
underestimated. On the other hand, in terms of understanding
the mechanism behind conical vortex behaviour it might be
warranted to look further into the effect of the high frequency
spectrum, a matter that is sometimes overlooked in relation to
upstream conditions of the flow (e.g. mean onset angles, quasi-
steady theory etc.).
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FIGURES

Figure 1. Unstructured meshes used in the simulation
a) locally refined with 480,000 cells and b) 380,000 cells.

t=t;+0.5-h/U

vortex entering
recirculation

Figure 2. Snapshots of iso-pressure surfaces (C,=1.67)
portraying conical vortex development and shedding.

L

L/h

Figure 3. Instantaneous pressure coefficient distributions at a
distance of 1h from the leading corner of the cubicle roof for a
period of 10(h/U,)
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Figure 4. Similarity of mean pressure coefficient profiles in the
direction normal to the side of the roof. a) dt=5.E-3, without
local grid refinement, b) dt=5E-4, without local grid refinement,
c¢) dt=5E-3, with local grid refinement.
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Figure 8. Mean flow field velocity vectors on the mid plane of
1.0 the cubicle normal to the flow direction (z=0). Cores of conical
Li2h vortices are indicated.

Figure 5. Horizontal profile of the mean pressure coefficient
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Figure 6 Vertical profiles of the mean pressure coefficient in the Kawai & Nishimura (1996)
middle of the leading face of the cubicle. 1.E-01 1 \/
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1504 ’ ® (Exp), Tsuchiya et al (1997) Figure 9. Power spectral density of the fluctuation pressure
’ - coefficient at the roof top a) calculated without local grid

refinement, b) with local grid refinement.

Figure 7 Mean pressure coefficient along the top of the cubicle
in a direction perpendicular to the side edge.
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