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ABSTRACT

In the present paper the effect of rotation over a turbulent

Stokes boundary layer is investigated using large-eddy simula-
tion. Both the vertical and the horizontal components of the
rotation vector are considered in the equations governing the
flow: this is a key point in the developing of Ekman boundary
layers.
The main consequence of rotation is the breaking of the sym-
metry between the two half periods that characterizes the
purely oscillating boundary layer. In agreement with relevant
literature, this produces a stabilizing/destabilizing action over
the turbulence activity. Turbulence appears enhanced com-
pared to the purely oscillating case, especially during the sec-
ond half cycle. Non-zero values of all Reynolds shear stresses
in conjunction with the generation of a mean shear in the
cross stream direction give rise to a larger production of tur-
bulent kinetic energy. As a consequence, rotation increases
the thickness of the turbulent boundary layer when compared
to the case of the equivalent Stokes boundary layer. Finally,
remarkable three-dimensionality is observed in the turbulent
field.

INTRODUCTION

The rotating and oscillating boundary layer (Ekman-Stokes
BL) is prototypical to the study of the tidal flow in coastal ar-
eas. In the present work we discuss the results of a research
designed to improve the knowledge of vertical turbulent mix-
ing in shallow water basins.

It is well known that in nearly parallel flows the presence of
a mean velocity shear normal to the axis of rotation may
have either a stabilizing or a destabilizing effect, depending
on whether the angular velocity and mean shear vorticity (i.e.
the vorticity associated to the mean shear) have the same or
opposite signs (see among the others Hopfinger and Linden,
1990; Kristoffersen and Andersson, 1993). The sign and the
magnitude of the parameter S, defined as the ratio between
the background vorticity and the mean shear vorticity, rule the
importance of rotation in shear flows. In particular, the back-
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ground vorticity and the shear vorticity are parallel if S > 0,
and anti-parallel otherwise.

As pointed out by Kristoffersen and Andersson (1993), such
vorticity ratio is a sort of a gradient rotation number. Fol-
lowing the intuition of Bradshaw (1969), who drove a formal
algebraic analogy between the Richardson number and the
parameters ruling the effect of rotation (or streamline cur-
vature) on a turbulent flow, Tritton (1992) suggested to call
B = S(S + 1) (the equivalent gradient 'Richardson number’
defined by Bradshaw, who first recognized its importance) the
Bradshaw number. Since the Richardson number is nega-
tive for destabilized flow, the effect of rotation is therefore
destabilizing when B < 0, that is when —1 < S < 0, and
the maximum destabilization occurs for B = —1/4, that
means S = —1/2. Both S < —1 and S > 0 are associated
with stabilized flow. It is noteworthy that in turbulent shear
flows ’stabilized’ relates with decrease of turbulence intensity,
and ’destabilized’ relates with increase of turbulence intensity
(Kristoffersen and Andersson, 1993).

The role played by B in rotating flows was formally demon-
strated by the experimental work of Johnston et al. (1972) by
recasting the transport equations for the Reynolds stress ten-
sor components, showing how the rotation may redistribute
the energy among the components of the turbulent kinetic
energy. The demonstration was reported by Coleman et al.
(1990, henceforth referred to as CFS90) in their numerical
study of the turbulent Ekman layer, which represents a sta-
tionary archetype of the neutral planetary boundary layer
(PBL). In particular, CFS90 emphasized the significance of
the source term 2Qp ((w?) — (u2)), that is produced in the
dynamic equation for the shear Reynolds stress —(uw) by the
component of the Coriolis force associated with Qg (w and u
are respectively the vertical and the streamwise components
of the fluctuating velocity, Qp is the horizontal component of
the Earth rotation, considered positive when parallel to the
mean shear vorticity). Since the streamwise rms values are
significantly larger than the vertical ones throughout the Ek-
man layer, a positive Qg implies a reduction, and a negative
Qp means an increase of the turbulence activity, as known
mainly related with —(uw). The role played by the back-
ground vorticity in the stability parameter B is here expressed



by Qp, whereas the mean shear vorticity comes properly from
the mean vertical gradient dU/dz. Since the oscillating flow
changes periodically sign throughout the cycle, the associated
vorticity will be parallel or anti-parallel to the background
vorticity Qp, and thus we expect that the flow will assume
periodically stabilizing and destabilizing characteristics.

Due to the substantial influence played by the horizontal com-
ponent Qg in turbulence activity, CFS90 concluded that the
’f-plane’ approximation cannot be adopted for numerical sim-
ulations of the Ekman layer. Similar conclusions were also
previously drawn by Etling and Wippermann (1975) and Lei-
bovich and Lele (1985).

The present paper deals with the analysis of the effects due
to the recasting of a purely oscillating flow in a rotational
frame, where the horizontal component of the rotation is per-
pendicular to the plane of the mean shear. The present work
is a spin-off of a research project aimed at understanding the
vertical turbulent mixing in critical conditions in the Gulf of
Trieste, but can be intended to represent typical mid-latitude
shallow water basins.

THE PROBLEM FORMULATION

In large-eddy simulation the large scales of turbulence are
directly resolved whereas the small-scale processes are param-
eterized by a subgrid-scale model. Such separation between
scales is mathematically formalized by the filtering of the
Navier-Stokes equations. The filtered, non-dimensional equa-
tions governing the rotating oscillating boundary layer driven
by an harmonic pressure gradient aligned with the x-direction
read as:
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In egs. 1 and 2, - denotes the filtering operation. The
coordinate x; (hereafter x1, x2, 3 or x, y, z are used in-
terchangeably for the streamwise, spanwise and wall-normal
directions) is made non-dimensional with the amplitude of
motion a = Up/w (where Up is the amplitude of the veloc-
ity oscillation and w is the angular velocity associated to the
tidal flow), ¢ is the time coordinate made non-dimensional
with 1/w, ; is the i-component of the filtered velocity field
(u1, uz, us or u, v, w are used for the streamwise, spanwise and
wall-normal velocity components) made non-dimensional with
Up, p is the filtered pressure field made non-dimensional with
poUo?, with po the fluid density. The third term of the RHS is
the non-dimensional, harmonic pressure gradient that drives
the flow, and the fourth term is the non-dimensional Coriolis
force associated with the oscillating inertial velocity propor-
tional to sin(t). The term 7;; represents the subgrid-scale
stresses that are parameterized by means of a dynamic-mixed
model composed by an anisotropic scale-similar part (Bardina
et al., 1980) and an eddy viscosity part (Smagorinsky, 1963).
The Reynolds number Re = aUp/v is related to the am-
plitude of motion and the Rossby number Ro = w/2Q is
associated to the rotation Q. In the present work, we chose
Re = 1.6 x 108 that corresponds to a Stokes Reynolds number
Res = Ugds/v = 1790 where 6s = /2v/w is the nominal
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thickness of the Stokes BL and v the kinematic viscosity. At
this Reynold number the flow exhibits fully developed turbu-
lence along most of the cycle (Salon et al., 2004a,b).

In our simulations, the frame of reference was designed in or-
der to represent a tidal flow, driven by an oscillating pressure
gradient, that is parallel to the SW-NE direction (towards NE
in the first half of the cycle, towards SW in the second half).
This configuration is related to the real features characterizing
the site of the research project. The shear flow representing
the tidal forcing has therefore a velocity (u) = (u(z)) aligned
with the xz-axis, whereas the rotation vector € has the hori-
zontal component Qp parallel to the northward direction and
the vertical component 2y normal to the zy plane. Consid-
ering Qp = (Q,8y), each rotated by 45° with respect to
Qpz, the angular velocity, that defines the Coriolis term in the
RHS, has thus the following components: Q = (Qz,Qy, Q) =
0(1/2,1/2,1/v2) = f(1/2v2,1/2v/2,1/2). Therefore, the
parameter S reads as: S = 2Q, /¢, where ( = dU/dz is the
mean shear vorticity. The Rossby number Ro can be expressed
as the ratio between the inertial and the rotational angular
velocities: in the present simulation it can be expressed as
Ro = wpa/f = 1.4, where wjpro is the angular velocity as-
sociated to the M2 component of the tidal flow (period of
12.4206 hours) and f = 2Qsin¢ is the Coriolis parameter
that has a value typical for the mid-latitudes (¢ = 45°).
The Coriolis force introduces a transverse pressure gradient
in the cross-stream component of the momentum equation,
thus originating an oscillation also in the cross-stream veloc-
ity component.

Following CFS90, the turbulent Ekman layer is character-
ized by a Reynolds number dependent on the intensity of
the geostrophic wind speed: Reg = G/+/vf/2. In our case
the role of the geostrophic flow is played by the tidal forc-
ing, G = Up. We obtain Reg ~ 2100, which is as large as
four times than the higher Reynolds number investigated by
CFS90.

Previous numerical studies (DNS by Kristoffersen and Ander-
sson, 1993, and LES by Tafti and Vanka, 1991) investigated
turbulent channel flow at low Reynolds numbers and at dif-
ferent rotation rates, being particularly interested in relam-
inarization effects and in rotational-induced structures. As
previously stated, our interest is instead more focused on the
influence of rotation in a periodically driven turbulent flow.

The numerical model solving the equations was developed
by Armenio and Piomelli (2000). A no-slip boundary condi-
tion is imposed at the bottom wall, a free-slip condition is
adopted at the top boundary, and due to the homogeneous
character of turbulence in the streamwise and spanwise direc-
tions, periodic boundary conditions are employed. The initial
condition is represented by a turbulent state relative to a 0°-
phase of the purely oscillating case. The data of the first two
cycles of oscillation were not used for the evaluation of the
statistics, since they are affected by an initial transient due to
the introduction of the rotation in the purely oscillating field.
The statistics were accumulated averaging over the zy planes
of homogeneity, and in phase over the whole cycle.

The computational grid has 64 x 128 x 256 points, respectively
in the streamwise, spanwise and wall-normal directions. The
dimensions of the box were chosen in order to guarantee that
it has an adequate resolution of the large-scale energy-carrying
turbulent structures: following Salon et al. (2004a), we chose
Lz = Ly =~ 5005 and L, ~ 4005, where s is the Stokes layer



thickness previously defined. This choice gives Azt ~ 70,
Ayt ~ 20 and AzT spanning between 2 and 22, based on the
maximum value of the friction velocity along the cycle.

RESULTS AND DISCUSSION

Figure 1 shows results of the rotating-oscillating flow, in
comparison with the same quantities computed for the purely
oscillating flow with the same grid resolution. In particular,
we plot temporal evolutions of the streamwise and the span-
wise velocities, 4 and v, as recorded at the free-surface (o is
obviously zero in the purely oscillating flow), the wall shear
stress Ty and the resolved, specific turbulent kinetic energy
defined as

1
E = V /(UIIZ +UII2 + w//2) dv

where V' = Ly Ly L, is the volume of the computational box
and the symbol " denotes fluctuating resolved quantities
(hereafter with / we indicate the total fluctuating quantity,
namely resolved + SGS contribution).
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Figure 1: Evolution along the first five periods of simulation of
relevant bulk quantities (solid line) and comparison with the
turbulent Stokes BL (dotted line): a) free-surface streamwise
velocity; b) free-surface spanwise velocity; c) wall shear stress;
d) specific turbulent kinetic energy.

Due to the additional Coriolis terms in the equations, the
streamwise velocity (Fig. 1a) appears slightly larger than that
of the purely oscillating case in those phases when the largest
values of the spanwise component occur, in particular during
the first half period. Such increase can be explained if we
consider a feedback mechanism between the horizontal com-
ponents of the velocity, which develops consequently to the
introduction of rotation in the system. The initial, very small
values of the cross-stream velocity induced by the rotation
grow as long as the simulation goes further (up to reach a sta-
tionary situation) and increase the magnitude of the Coriolis
term present in the momentum equation, and therefore the
streamwise velocity, which in turn influences the cross-stream
component (Fig. 1b). Similarly to the laminar flow (not dis-
cussed here), the free-surface cross-stream component is about
one order of magnitude smaller, and it has a phase-lag with
respect to the streamwise one: this means that a Lagrangian
particle buoying over the surface will experience an elliptic
path whose minor axis is about one tenth of the major one.
The wall shear stress (Fig. 1c) appears to be about 5% smaller

than that of the purely oscillating case, and its maximum value
gives a friction coefficient fy, ~ 0.004, which is very close to
that obtained in the purely oscillating flow. Such similarity
can be explained by the fact that, as well known, the work
done by the Coriolis force on the flow is zero, and no addi-
tional viscous stresses are produced by a constant rotation
(Tritton, 1988). The value of u, associated to the maximum
wall shear stress is in good agreement with what expected,
for a value of Reg =~ 2100, by the extrapolation at higher
Reynolds number described by CFS90 (see Fig.22a).

The temporal evolution of the turbulent kinetic energy resem-
bles that recorded in the purely oscillating case, characterized
by phases where turbulence tends to switch off. However,
the energetic peaks are more than one third larger than the
oscillating case: this is an effect of the Coriolis force that, be-
sides rising a cross-stream velocity, generates additional terms
in the transport equation of the turbulent kinetic energy, as
shown in a next section. On the other hand, the total kinetic
energy (not shown) correctly does not change with respect to
the non-rotating case.

Mean velocity fields

The mean vertical profiles of the streamwise velocity made
non-dimensional with Ug (Fig. 2) are plotted every 15° only
for the first half cycle. The rotation slightly affects the second
half of the cycle (from 180° to 360°), corresponding to a tidal
current flowing from NE to SW: the relative magnitude of the
mean profiles is about 1% larger than that of the first half, in
particular for zy > 20dg and phases between 150° and 180°.
The profiles differ from those of the purely oscillating case in
the central phases, between 75° and 150° (Fig. 2b,c,d). The
differences are more evident in the layer 26 < z4 < 308s
and are due to the presence of the cross-stream velocity. It is
noteworthy that the bulge which characterizes both the lam-
inar (Tritton, 1988) and the turbulent Ekman layer (CFS90),
and also the turbulent Stokes BL (Salon et al., 2004a,b) is here
practically absent. This has to be ascribed to the combined
effect of oscillation and rotation and is related to an addi-
tional increase of the Reynolds shear stresses with respect to

the molecular ones.
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Figure 2: Non-dimensional mean streamwise velocity (u)/Ug
for the rotating-oscillating flow (thick lines) and for the purely
oscillating flow (thin lines).

The mean vertical profiles of the cross-stream velocity
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Figure 3: Non-dimensional mean spanwise velocity (v)/Up.

(Fig. 3), significantly differ during the two parts of the cycle.
Similarly to what observed in the laminar case, the profiles
evolve throughout the cycle and the vertical location where
the maximum value of velocity occurs varies along the cycle..
The associated near-wall layer, evaluated as the distance from
the maximum of (v) to the wall, is very thin and close to the
wall at 90° (end of the first accelerating phase, Fig. 3a) and
increases up to zg ~ 146g between 270° (Fig. 3c) and 285°
(Fig. 3d, end of the second accelerating phase), then it is again
very close to the wall. The maximum value reads about —0.13
at 30° and about 0.14 at 210°, both at z4 &~ 3dg, which is of
the same order of that evaluated by CFS90.

Due to the oscillation, the turbulent depth d7 defined by
CFS90 as the ratio between the friction velocity and the Cori-
olis parameter, evolves in our case throughout the cycle, being
on average maximum at 75° (and 255°) and zero at 160° (and
340°). ur/f = 5485, which
due to the choice of the computational domain, is more than
one third larger than L.. For a Reynolds number equal to
400, CFS90 estimated an Ekman layer height (defined where
(v) = 0) of about 0.7§7: the same relation with dp gives in
our case an Ekman layer height as high as z4 ~ 38Jg, that
corresponds to (v) = 0.07. This explains the presence of an
elliptic trajectory at the surface, which, on the other hand, is
also observed in the full-scale case, and also of the non-zero
values of the spanwise velocity at the top of the domain. Note
that in the purely oscillating case the depth of the turbulent
layer amounts to about 256g.

The maximum value is dp

The mean spanwise velocity shows a phase-lag decreasing
going further from the wall: the axes of the corresponding el-
liptic paths (Fig. 4) therefore rotate clockwise moving from the
surface down to zg = 10dg, they do not change at zy = 6dg
and then reverse the sense of rotation down to the wall. The
minor axis is maximum at zg = 2dg, as also shown in Fig. 3.
Thus, the combined effect of oscillation and rotation and the
depth-dependent phase-lag between the horizontal velocity
components prevents from the formation of the ”Ekman spi-
ral” in the present flow.

Reynolds stresses

Rotation induces a non-zero cross-stream velocity, thus the
Reynolds shear stresses associated to v/, namely 112 = (u/v’)
and Ta3 (v'w’), are no longer zero as in the purely
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Figure 4: Elliptic paths: mean spanwise vs mean streamwise
velocity at different planes : a) zg = 40ds; b) z4 = 300s;
c) zq = 200s; d) zq = 10ds; e) zq = 6ds; f) 24 = 205; )
zq = 0g. The axis ratio is 1 : 5.

oscillating flow, and they are not negligible when compared
to T13 = (u'w’).
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Figure 5: Non-dimensional mean Reynolds shear stress
(uw'w')/UE for the rotating-oscillating flow from 15° to 180°
(solid line), from 195° to 360° (dashed line) and for the purely
oscillating flow (dotted line).

Figure 5 shows the vertical profiles of the non-dimensional
Reynolds shear stress (u’w’) plotted every 15° throughout the
whole cycle, from the wall to the surface. The beginning of
the turbulence activity is observable during the accelerating
phases of the two half periods, respectively at 45° and at
225°. Turbulence appears well sustained during the central
phases (from 60° to 135° and from 240° to 315°) and near
the wall, with intensity comparable to the purely oscillating
case at zg < 10dg, and larger for z4 > 100g. A remarkable
difference from the purely oscillating flow is the absence of the
sign change of (u’w’) in most of the cycle (from 75° to 165°
during the first half-period and from 225° to 345° during the
second). This is associated to the behavior of the mean verti-
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Figure 7: Non-dimensional mean Reynolds shear stress
(v'w’)/UZ for the rotating-oscillating flow from 15° to 180°
(solid line), from 195° to 360° (dashed line) and for the purely

oscillating flow (dotted line).

cal shear d(u)/dz (see Fig. 2) which holds its sign during most
of the cycle, and, as a consequence, to the absence of the bulge
in the mean streamwise velocity profile. Unlike the oscillat-
ing flow, non-zero values of 713 are present in the outer layer,
at zg > 20dg, and larger intensities characterize the second
half-period, corresponding to tidal current moving from NE
to SW. From 255° to 315° 713 is on average as high as 34%
than 713 from 75° to 135°, and the difference increases up to
93% at the phase 345° with respect to 165°. The anticipated
stabilizing/destabilizing effect of rotation on turbulence ac-
tivity is therefore here observable. In particular, we recognize
the east/west enhancement/reduction trend stated by CFS90:
when the tidal forcing flows from SW to NE (from NE to SW),
corresponding to the first (second) half-period, it produces a
mean vorticity which is parallel (anti-parallel) with Qg and
thus stabilizes (destabilizes) the turbulent activity.

The fluctuations of the horizontal velocity components
(Fig. 6) appear strongly correlated only near the wall, for
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Figure 8: Bradshaw number B for three cycles of simulation
(period is 140 s): shading represents positive values of B.

zq < bdg, exactly where the mean cross-stream velocity
achieves the maximum amplitudes. The correlation is also
larger in the second half-period of oscillation, between 30°
and 75°, when a rapid increase of the turbulence activity is
observed, and the maximum value at 45° is comparable with
the maximum of 713 at 90/270°. Negative, larger values of
T12 characterize the accelerating phases, while the decelerat-
ing ones (from 105/285° to 165/345°) experience positive and
smaller values.

The cross-stream and the vertical velocity fluctuations are
correlated (Fig. 7) along the whole column and throughout
the whole cycle of oscillation, with intensities that are around
one third of the largest magnitudes of 713. In particular the
height which corresponds to the reverse point (where the sign
of 723 changes) of the first half-period coincides with that of
the second half-period for all the phases. The reverse point
evolves during the phases, going away from the wall up to
2q & 22—2605 between 135/315° and 150/330°, when another
reverse point develops very close to the wall. An asymmetry
between the two half-periods, already observed for 713, can
be observed in the outer layer, near the surface: in this case
the turbulence activity involving v and w is more intense with
forcing coming from SW during the first accelerating phases,
near the surface, whereas in the last decelerating phases the
usual ”east enhancement” is observable in the lower half of
the column.

A complementary analysis of the three components of the
Reynolds stress suggests that a turbulent state is always
present throughout the cycle. Although 713 is significant
(larger than 0.001U2) from 45/225° to 120/300°, 712 is
stronger near the wall between 30/195° and 60/240° and 723
has values order 0.0005U§ in the outer layer from 150/330°
to 45/225°, but is always non-zero during the cycle, in par-
ticular far from the wall. The structure of turbulence appears
to be completely three-dimensional, with a well established
anisotropic behavior.

In order to have a further confirm of the agreement of our
results with theory, we plot in Figure 8 the value of the Brad-
shaw number B as previously defined: the sign of B is positive
(negative) for stable (unstable) conditions corresponding to
tidal forcing current coming from SW (NE).

A comparative analysis of the three turbulence intensities
(not shown here) indicates that although the streamwise com-
ponent is only slightly affected by the rotation, the vertical



and the cross-stream components appear considerably influ-
enced by rotation, in particular far from the wall, even if the
temporal evolution does not remarkably change with respect
to the non-rotating case.

Stable conditions, corresponding to tidal current coming from
SW| increase cross-stream turbulence intensity especially near
the surface and during the accelerating phases, while unstable
conditions affect turbulence, although at a minor extent, in
particular in the late decelerating phases. In the outer layer
and near the top of the computational domain, tidal forcing
from SW affects the vertical fluctuations in particular dur-
ing the accelerating phases, producing intensities larger than
those observed in the purely oscillating case.

The result of the present study are consistent with those of
CFS90, although the latter are relative to different flow and
boundary conditions. Specifically, as in CFS90, we observe
a near-surface behavior characterized by small but non-zero
horizontal fluctuations. Moreover, CFS90 addressed to a
streamuwise-spanwise reversal which in our simulation is ob-
servable near the surface, during the central phases of the
unstable half-period, when spanwise fluctuations result larger
than their streamwise counterparts.

CONCLUSIONS

The rotating-oscillating boundary layer is investigated in
the present paper. To the best of our knowledge this is the
first numerical study of such a turbulent flow field.

Recasting of a purely oscillating flow in a rotational frame
has the main effect of breaking the symmetry between the two
half cycles of the oscillation period.

Moreover, rotation has a twofold effect on the system dy-
namics: in the first half cycle, corresponding to forcing from
SW to NE, the mean vorticity (related to the mean vertical
shear) is parallel to the background vorticity and consequently
turbulence tends to be stabilized and its activity decreases;
conversely, in the second half period, where forcing goes from
NE to SW, the mean vorticity is opposite to the background
one and thus turbulence tends to be destabilized and its activ-
ity increases. Therefore, as shown in Fig.5, turbulence activity
increases when compared to the pure oscillating case, in par-
ticular in the bottom half of the water column and during the
decelerating phases of the cycle (from 90° to 165° and from
270° to 360°), being always more intense in the second half pe-
riod. Such a stabilizing/destabilizing effect agrees with theory,
as described in Hopfinger and Linden (1990) and CFS90, and
emphasizes the importance played by the horizontal compo-
nent of the Earth rotation vector in the dynamics of turbulent
Ekman layers.

Our results show non-zero correlations between horizontal
velocity fluctuations (712) and between spanwise and verti-
cal components (723), and also an increase of the vertical
and cross-stream turbulence intensities when compared to the
purely oscillating flow. This picture describes thus a highly
three-dimensional character of turbulence, affecting the three
spatial directions. The evolution of B throughout the cycle is
also correctly reproduced (Fig.8), together with the enhance-
ment trend of turbulence observed with inertial forcing coming
from eastern quarters of the compass, as also addressed by
CFS90.

The horizontal and vertical mixing appears therefore to be
enhanced by the rotation, and especially when tidal current
flows from NE. Differently from what observed in the purely
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oscillating case, turbulence activity spans over the three direc-
tions, with stronger intensity along the horizontal planes near
the wall during the first accelerating phases. Rotation also
produces the thickening of the depth of fluid where developed
turbulence is observable.
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