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ABSTRACT

The fractal geometry is quantified for concentration iso-
surfaces of a high Schmidt number passive scalar field
produced by an iso-kinetic source with an initial finite
characteristic length scale released into the inertial layer of
fully developed open channel flow turbulent boundary layers.
The fractal dimension and other fractal measures of two-
dimensional transects of the passive scalar iso-surfaces are
found to be scale dependent. The fractal dimension is around
1.0 at the order of the Batchelor length scale and increases in
a universal manner to reach a local maximum at a length scale
around the Kolmogorov microscale. We introduce a new
parameter called the coverage length underestimate, which
reflects universal behavior in the viscous-convective regime
and hence is a useful practical tool for many mixing
applications. At larger scales (in the inertial-convective
regime), the fractal measures are dependent on Reynolds
number and concentration threshold of the iso-surfaces.

INTRODUCTION

Passive scalar fields in turbulent flows are highly convoluted
structures that are continuously distorted by the fluctuating
velocity field. These structures have been primarily studied
from the classical turbulence theory point of view based on the
concept of local isotropy and self-similar scalar variance
cascade (Kolmogorov, 1941; Obukhov, 1949; Corrsin, 1951).
This approach provides valuable results regarding the structure
of scalar fields, but it lacks the ability to characterize the
structure geometrically (Sreenivasan and Antonia, 1997,
Shraiman and Siggia, 2000; Warhaft, 2000). Fractal geometry
analysis allows geometric characterization and therefore has
tremendous practical significance for understanding and
predicting the dynamics of reactive and non-reactive turbulent
mixing. Moreover, recent work has developed new fractal
measures that have fundamental significance regarding the
assumptions of the classical turbulence theory (Catrakis et al.,
2002). Therefore, fractal geometry analysis is an important
tool in the context of passive scalars in turbulent flows
because it aids both fundamental understanding and practical
application.

We report here the fractal geometry analysis of iso-surfaces
of passive-scalar fields generated by an iso-kinetic release into

355

turbulent boundary layers. Most previous studies have
focused on the geometry of passive scalar (typically of a high
Schmidt number) iso-surfaces for high-momentum round jet
injection into a stagnant ambient fluid (Miller and Dimotakis,
1991; Catrakis and Dimotakis, 1996; Frederiksen et al., 1997,
Catrakis et al., 2002). The choice of high-momentum jets is
perhaps due to the practical relevance of mixing via jets,
which is commonly employed by engineers when mechanical
stirring is restricted. Also, the fractal characteristics for an
iso-kinetic release have been previously studied in the far field
of a high momentum jet (Villermaux and Innocenti, 1999).
The current configuration has relevance for the analysis of
plume mixing and dispersion characteristics of turbulent shear
flows.

The objective of this study is to examine the scale
distribution of two-dimensional transects of passive scalar iso-
surfaces as a function of concentration threshold and Reynolds
number. The scale distributions of iso-surfaces are analyzed
via established fractal measures, such as the fractal dimension
and coverage length. Additionally, a new parameter called the
coverage length underestimate is presented.

EXPERIMENTAL PROCEDURE

Experiments were conducted to measure the fluctuating
scalar field in equilibrium open-channel turbulent boundary
layers for Reynolds number based on bulk velocity and flow
depth of 5,000, 10,000, and 20,000 (60<Re, <120).

Measurements were performed in a 1.07 m wide, 24.4 m long
tilting flume for fully-developed, uniform flow conditions
with a flow depth of 100 mm. Detailed velocity
measurements obtained via Particle Tracking Velocimetry
(PTV) are reported in Dasi (2004). The wall shear velocities,
u* , were 3.25, 6.4 and 10.6 mm/s for the respective Reynolds
number cases. The normalized mean velocity profiles
coincided almost exactly with the viscous sublayer, buffer
layer, and logarithmic layer. The Reynolds stress profiles also
agreed very well with previous measurements of Tachie et al.
(2003) and DNS results of Spalart (1988) for similar Re,.

The passive scalar field was generated by an iso-kinetic
release (nozzle diameter of 4.7 mm) of the fluorescent dye
Rhodamine 6G (Fig. 1). The center of the nozzle orifice was
at an elevation of 50 mm above the flume bed. To minimize



the wake perturbation, the nozzle was custom-built with a
streamlined fairing. The planar laser-induced fluorescence
(PLIF) technique was used to collect long time records of the
scalar field measured in a vertical plane parallel to the flow on
the centerline of the plume. The laser sheet (created by
sweeping the laser beam with a scanning mirror) caused the
dye to fluoresce and a digital CCD camera (1396 x 1024
pixels, 12 bit/pixel) captured the emitted light over a 19 mm x
13 mm region (thus, the image resolution was 13 um/pixel).
In order to resolve the smallest relevant length scale, namely
the Batchelor scale (9 pm<7, <24 pm for the different
Reynolds numbers), the laser beam passed through a beam
expander and convex lens (I m focal length), to give a 1/¢
diameter of 80 pum at the center of the image. Thus, the image
plane was resolved at the order of the Batchelor scale and the
sheet thickness was slightly larger. The laser beam swept
through the flow very rapidly, essentially freezing the flow
structure (less than 1% distortion error due to advection). A
sample concentration field is shown in Fig. 2(a). The images
were captured at a frame rate of 10 fps. For each data record,
12,000 consecutive images were captured. A careful
calibration of the relationship of light intensity to the dye
concentration was performed in situ for each individual pixel.
All experimental procedures are described in detail in Dasi
(2004).

Concentration iso-surfaces for defined concentration
threshold levels were extracted for the 512x512 pixel array
near the center of the image (shown in Fig. 2(a)), where the
mean concentration gradient was approximately constant.
Concentration iso-surfaces corresponding to four thresholds
were extracted for each image. The threshold concentration,

©,,(m), corresponded to m times the local standard

deviation above the local mean (i.c. ®,,(m)=(®)+ m<92>”2 )

where m was chosen to be 1, 3, 5, and 7. The range of useful
concentration thresholds was bounded due to noise and limited
sample size of the data sets. Due to the intermittent nature of
the plume, the local mean concentration was orders of
magnitude lower than the peak instantaneous concentration.
The signal to noise ratio of intensities corresponding to
concentrations lower than the local mean were poor and
therefore limited the range of thresholds to be greater than the
mean concentration. Also, for m>7 only a small number of
images contained iso-surface structure, which prevented
statistically-converged measures.

Schuerg (2003) tested several iso-surface extraction methods
and concluded that the boundary outline pixel approach is the
superior method. A primary advantage of the boundary
outline pixel method is that it eliminates the asymmetry
between identifying “island” and “lakes” in the field. The
methodology considered the concentration of a pixel (called
the “center pixel”) and compared it with the concentration of
the eight neighboring pixels. If the concentration of the center
pixel was greater than or equal to the threshold concentration,
then the surrounding eight pixels were examined for threshold
crossings. A neighboring pixel with a concentration below the
threshold indicated a crossing between that pixel and the
center pixel. A linear interpolation of the concentration
between the two pixels was used to calculate the location of
the crossing. The pixel closest to the crossing was flagged as
a boundary outline pixel. If the location was exactly in the
middle of the two pixels then both pixels were flagged as
boundary outline pixels. This methodology was used for
every pixel in each image to generate the iso-surface for the
defined concentration threshold. The outcome was a binary
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image consisting of the iso-surface (sample shown in Fig.
2(b)).

Coverage statistics of the iso-surface were based on the
coverage count generated by the box-counting algorithm. In
the box-counting algorithm, the maximum image area was
termed as the bounding box of size J, (= 512 pixels for the

present study). The bounding box was subdivided into
N,,, () squares of area A, and the number of squares that

contain any part of the iso-surface was counted as NZ(}t).

The subscript 2 stands for the embedding dimension, d =2
for our planar measurements. The coverage count was
generated for the range 0< A <J, at logarithmically equally-

spaced discrete values of A. The coverage statistics were
estimated from the discrete coverage count N, (/1) generated

at 10 levels of A. The 10 levels of A, denoted by A,

correspond to 512, 256, 128, 64, 32, 16, 8, 4, 2 and 1 pixels
for s=1,2,..,10. Following the recommendation of Miller
and Dimotakis (1991), the starting position of the subdivision
was shifted to eight starting locations (in each coordinate
direction). Thus, for each box size, A, we shifted the grid to
8x8 = 64 different locations. For the smallest scale of one
pixel, only one position was possible. For the second-smallest
subdividing box, there were 2x2 = 4 possible shifting
positions, and so on. Of course, it does not make sense to shift
the grid for the largest length scale. Some boxes shifted past
the boundaries of the image. In such circumstances, we
artificially connected the left image boundary to the right one,
and the upper image boundary to the lower one. As discussed
in the next section, other fractal measures were calculated
based on the coverage count results. The results were
ensemble-averaged over the full record of images.

Schuerg (2003) validated the coverage statistics calculation
algorithm by evaluating the performance when applied to
deterministic self-similar fractal objects of known theoretical
dimension. Based on Koch curves given by Mandelbrot
(1982), five deterministic fractals with the dimensions D =
1.1046, 1.2553, 1.4466, 1.6131, and 1.7604 were developed
and analyzed. In each test the algorithm satisfactory produced

the expected coverage statistics.

RESULTS AND DISCUSSION

The coverage count, at a given scale, A, is the number of
boxes of size A in the grid that contain any part of the scalar
iso-surface within the bounding box. There are a number of
other measures based on the coverage count that yield a
comprehensive description of the fractal geometry of the iso-
surfaces. These measures are collectively called the coverage
statistics. In general, the coverage statistics of a set focus on
the space filling properties and scale distributions of the set.
Catrakis and Bond (2000) provide a valuable overview of the
coverage statistics.

Figure 3 shows the coverage count for the four threshold
levels. The coverage count decreases with A and threshold
level. The decrease with respect to threshold level is
consistent with Miller and Dimotakis (1991) for passive scalar
mixing in a turbulent jet. Also, the coverage count at =3,

is not necessarily unity and decreases with increasing
threshold due to the presence of empty bounding boxes
attributed to the highly intermittent scalar field. The negative
slope of the curves decreases in magnitude with threshold



level, for scales greater than the Kolmogorov scale (at
log,, (l/éb) = -1.2) for the three higher thresholds.

The coverage dimension is defined as the negative of the
logarithmic derivative of the coverage count of the surface.

The coverage dimension or box-counting dimension, D, (1),

is thus given by:

_dlogNd(/l)
dlogid

D,(2)= )

The term fractal dimension is often used synonymously with
coverage dimension. Although the coverage dimension is not
equal to the more rigorous measure (namely the Hausdorff
dimension) even for simple deterministic self-similar fractals,
it successfully captures most characteristics of fractal surfaces.

Figure 4 shows the variation of the coverage dimension
with respect to concentration threshold. The coverage
dimension approaches the topological dimension, d, =1, as

A —n, reflecting the fact that iso-surfaces are ultimately

smooth curves at scales below the order of the Batchelor scale.
From the figure, the coverage dimension is clearly scale
dependent, irrespective of threshold, in agreement with the
observations of Catrakis and Dimotakis (1996) for high
momentum jets. The coverage dimension for all thresholds
increases with scale in the viscous-convective range

-2.7< logw(l/é',)) <—1.2, indicating that the convolution of

the iso-surfaces appears to be more space filling with
increasing scale. Also, the coverage dimension in the viscous-
convective range is less sensitive to variations in the
concentration threshold. The coverage dimension appears to
be the same for the three higher concentration thresholds,
while that of the lowest threshold shows a mildly elevated
coverage dimension which may be attributed to mediocre
signal to noise ratio for the given threshold.

The curves at scales greater than the Kolmogorov length
scale are sensitive to variations in the concentration threshold
where coverage dimension appears to decrease with scale size
for the higher thresholds. The decrease in coverage dimension
is due to the fact that at scales larger than the Kolmogorov
scale, the scalar blobs are often completely inside the A -sized
boxes thereby appearing as a collection of spots. This,
combined with the presence of empty boxes in the ensemble,
explains why the coverage dimension falls below d, = 1.

Unlike the previous observations in jet flows, the iso-surfaces
appear more and more “spotty” (D, < 1) as the size of the

boxes increases. Note that for the lowest concentration
threshold the coverage dimension continues to increase with
scale size in the inertial-convective regime. This variation is
not an artifact of noise but instead indicates that the size of the
scalar iso-surfaces at low thresholds increases faster than the
size of iso-surfaces of higher thresholds. This is true because
these iso-surfaces correspond to the far edges of the scalar
blobs where molecular diffusion is expanding the iso-surface.
Figure 5 shows the variation of coverage dimension with
Reynolds number. In the viscous-convective regime the
coverage dimension appears to be independent of Reynolds
number except for the lowest Reynolds number where the
curve is slightly flatter than those for higher Reynolds
numbers. It has also been shown that the coverage dimension
is independent of the initial length scale (i.e. nozzle size) at
which the scalar is introduced into the flow (Dasi, 2004). It
can be concluded that the coverage dimension in the viscous-
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convective range behaves in a universal manner for high
Reynolds numbers. In the inertial-convective range, the
coverage dimension for the two highest Reynolds numbers are
fairly coincident for each threshold level. The coverage
dimension for the lowest Reynolds number is significantly
lower in this range. This Reynolds number dependence may
be explained from fact that the intermittency factor increases
with Reynolds number (Dasi, 2004). This implies that the
scalar field does not appear as sparse as for lower Reynolds
number, thereby increasing the coverage dimension. Note that
the coverage dimension remains below 1 in the inertial-
convective range for the range of Reynolds number. For
higher Reynolds number, the coverage dimension in this range
may exceed 1, which would indicate that the iso-surfaces,
although sparse, have smoother large scale structures.

The coverage length, L, (4), measures the total length of

the scalar iso-surface in the bounding box using the ruler of
size A. For the present case with d = 2, this measure
corresponds to the length of the scalar iso-surface, which can
be thought of as an interface boundary. For higher dimension,
it corresponds to interface area, volume, and so on, per
bounding box. This measure is estimated as:

L,(A)=A"N,(2) 2)

where d, is the topological dimension of the set and is equal

to 1 for our measurements. Note that L, (/1) generally

increases with decreasing A and tends to the total coverage
length, L as A—0. For classical fractals, the total

d.tot >
coverage length is infinity due to self-similarity at arbitrarily
small scales. We represent this measure as the coverage
length per unit bounding box area.

Figure 6 shows the total coverage length in millimeters per
square millimeter of the measurement region for different
concentration thresholds. In the viscous-convective range, the
coverage length decreases with increasing scale and the curves
corresponding to different thresholds appear nearly parallel.
Above the Kolmogorov length scale, there is a change in the
trend dependent on the threshold. For the lowest threshold the
coverage length continues to decrease, whereas for the other
thresholds the curve attains a local minima followed by an
increase in coverage length. The increase with increasing
scale size is possible as the coverage dimension at these scales
falls below unity. Overall, the coverage length decreases with
increasing threshold. This decrease with increasing threshold
can be explained in analogy to the contour lines of “tapered
peaks or hills” of concentration. Increasing the threshold
moves the contour up the hill while reducing the length of the
contour. As A —0, the coverage length of each curve
approaches the true length of the iso-surfaces, while the
lengths measured at higher scales may be interpreted as
artifacts of lower resolution.

Schuerg  (2003) introduced the coverage length
underestimate, <L2‘U (/1/ 5, )> , defined as:
(L)
L, (4/3,))=-—12 3)
(2 (/8)) (L,(2/8,))

The coverage length underestimate is essentially the ratio of
the total iso-surface length to the length measured at larger
scale size. This measure is useful because the coverage length



underestimate shows universal characteristics similar to the
coverage dimension (discussed below).

It can be shown that a universal variation of the fractal
dimension in the viscous-convective regime corresponds with
universal behavior of the coverage length underestimate (Dasi,
2004):

“4)

L, (4)= exp[]%(Dd (7) —d,)dij

Consequently, one may estimate the true interfacial length
based on the universal variation of the fractal dimension in the
viscous-convective regime.

Figure 7 shows the coverage length underestimate for the
four threshold levels. The figure shows that the true coverage
length is about 150-200% greater than that measured at the
resolution of the Kolmogorov length scale. The coverage
length underestimate is largely independent of the threshold
level in the viscous-convective range. Note that the curve
corresponding to the lowest threshold shows elevated
coverage length underestimate in this regime (similar to the
elevated coverage dimension in Fig. 4). Figure 8 shows the
coverage length underestimate for different Reynolds
numbers. The figure indicates that the coverage length
underestimate is independent of the Reynolds number in the
viscous-convective regime. In the inertial-convective range,
the coverage length underestimate increases with Reynolds
number.

CONCLUSION

This paper presents an analysis of the field generated by an
iso-kinetic release of a high Schmidt number passive scalar
into a turbulent boundary layer. In particular, the paper
presents an analysis of the local-structure from an applied
view point via the tools of fractal geometry. The passive
scalar iso-surfaces were analyzed by the box-counting
algorithm to generate various scale-dependent coverage
statistics of the iso-surfaces including the fractal dimension.
The raw iso-surface images were qualitatively different from
those reported in the archival literature for the case of scalar
fields generated via high-momentum jets. Here, the scalar
field was highly intermittent and consisted of sparse filaments
in the measurement plane. The fractal measures of the iso-
surfaces were found to be scale dependent with Level 3
complexity.

The fractal dimension (of two-dimensional transects of the
passive scalar iso-surfaces) was observed to be close to the
topological dimension of 1.0 at scales near the Batchelor scale.
The fractal dimension increased with increasing scale, which
indicates that the interfaces were smooth at the smallest scale.
For the higher concentration thresholds the fractal dimension
reached a maximum around the Kolmogorov length scale
indicating maximum convolution at this scale. Fractal
dimension values below the topological dimension were
observed for higher thresholds due to the sparseness of the
filaments.  The fractal dimension was sensitive to all
experimental parameters. However, in the viscous-convective
regime the fractal dimension appeared to follow a universal
behavior. The fractal dimension at larger scales decreased
with increasing concentration threshold, and it increased, to
some degree, with increasing Reynolds number.

Other fractal measures collectively known as the coverage
statistics were also examined. Most importantly, a new
measure, namely the coverage length underestimate, was
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calculated for the passive scalar iso-surfaces. The coverage
length underestimate is a useful measure for modeling because
it provides information for the true interfacial length given a
coarse observation or simulation of the passive scalar field.
Consequently, one may estimate the true interfacial length
based on the variation of the fractal dimension in the viscous-
convective regime.
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Figure 2 : (a) Sample concentration field, and (b)
corresponding boundary outline image for m = 1. Data
shown for x =4 m, Re =10,000 and D =4.7 mm.
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Figure 3 : Coverage count as a function of concentration
threshold. Data plotted versus normalized scale, 4/9, , for
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the passive scalar iso-surface at a concentration m times the
local standard deviation above the local mean, for m =1 (o),
3(0),5(A),and 7 (V),at x =4 m; for D =4.7 mm and
Re =10,000.

1.6 -

1.2+

<D,>
T

0.8

0.4+

log,,(\M5,)
Figure 4 : Coverage dimension as a function of concentration
threshold. Data plotted versus normalized scale, 4/7, , for
the passive scalar iso-surface at a concentration m times the
local standard deviation above the local mean, for m =1 (o),
3(0),5(A),and 7 (V),at x =4 m; for D =4.7 mm and
Re =10,000.



161 af
1.2+ 3L
A AT
Q S ¢
(VA vk
0.8+ 2r
0.4 s
0 [ I I I | I I | L I 0 L I L | I L L I | L I
-3 -2 -1 0 -3 -2 -1 0
log,,(W5,) log (M5,)
Figure 5 : Coverage dimension as a function of Reynolds Figure 7 : Coverage length underestimate as a function of
number. Data plotted versus normalized scale, A/5, , for the concentration threshold. Data plotted versus normalized scale,
passive scalar iso-surface at a concentration m times the local 418, , for the passive scalar iso-surface at a concentration m
standard deviation above the local mean, for m =3 (o) and 5 times the local standard deviation above the local mean, for
(A),at x=4m;for D =47 mmand Re = 5000 (— ), m =1(),3(0),5(A),and7 (V),at x =4 m; for D =4.7
10,000 (— — -), and 20,000 (sessssse). mm and Re =10,000.
10° >
L 4

<L2>(mml)
S
T T
<L, >
T T 7T | T T 7T | T 1 7T T | T T T T | T T T

1
2 1 1 1 L 1 ! L L L 1 1 | I I 1 1 | | 1
193 2 & 0 03 2 I 0
log,(W5,) log,,(M/8,)

Figure 6 : Coverage length as a function of concentration Figure 8 : Coverage length underestimate as a function of

threshold. Data plotted versus normalized scale, 4/4, , for Reynolds number. Data plotted versus normalized scale,
the passive scalar iso-surface at a concentration m times the 16, , for the passive scalar iso-surface at a concentration m
local standard deviation above the local mean, for m =1 (), times the local standard deviation above the local mean, for
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