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ABSTRACT

Large-eddy simulation (LES) of Langmuir circulation in a
wind-driven shear current in shallow water is reported. Af-
ter the introduction and a brief description of the governing
equations and the numerical method, we focus on the ma-
jor differences in the dynamics between wind shear-driven
Couette flow and the same flow with Langmuir circulation.
This comparison will rely on flow visualizations and diagnos-
tics including mean velocity profiles, invariants of the resolved
Reynolds stress anisotropy tensor and balances of the trans-
port equations for resolved mean turbulent kinetic energy and
resolved Reynolds stress tensor.

INTRODUCTION

Langmuir circulation (LC), often occurring in the wind and
wave driven surface mixed layer of lakes and oceans, consists
of pairs of parallel counter-rotating vortices (or cells) oriented
approximately in the streamwise direction. Originally charac-
terized by Langmuir (1938), Langmuir cells are thought to be
generated by interaction between the wind-driven mean shear
current and the Stokes drift current caused by surface gravity
waves.

Over the last several decades, numerous field observations
of LC have been made using acoustic Doppler current profil-
ers. Most of these works have recorded LC in the ocean surface
mixed layer over deep water. Recent observations (Gargett et
al., 2004 and Gargett and Wells, 2005) made on the shal-
low shelf off the southern coast of New Jersey in the presence
of strong wind and wave forcing led to the discovery of LC
extending throughout the entire water column. Such patterns
reaching down to the bottom boundary layer have been termed
supercells because of their profound influence on sediment re-
suspension and transport.

LES of LC performed up to date have also focused on
the surface mixed layer over deep water, far from the bot-
tom boundary layer. Recent simulations include those of
Skyllingstad and Denbo (1995), McWilliams et al. (1997),
and Li et al. (2004). Skyllingstad and Denbo found that
wave forcing (creating LC) plays a bigger role than convec-
tive forcing in generating mixing. McWilliams et al. included
the Coriolis force as well as LC forcing and found enhanced
vertical turbulent velocity fluctuations due to LC. Li et al. per-
formed a number of simulations and found differences in the
turbulence structure between convection-dominated, shear-
dominated and Langmuir-dominated turbulence.

We report LES of Langmuir supercells approximating the
conditions observed by Gargett et al. (2004) and Gargett and
Wells (2005: henceforth GW). To that extent, Couette flow
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was simulated with a stationary, no-slip plane at the bottom
and a constant streamwise, tangential stress boundary condi-
tion at the top surface approximating the effect of a constant
wind shear stress (see figure 1). The governing equations were
augmented with the Craik-Leibovich (CL) force (Craik and
Leibovich, 1976) accounting for LC.
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Figure 1: Sketch of Couette flow driven by surface stress,
Tsurface; due to wind. The total depth is H and 6 = H/2.

linear velocity profile in a laminar flow.

Over the last decade, numerous direct numerical simula-
tions of traditional turbulent plane Couette flow have been
carried out. A common feature observed in these studies
is the presence of streaks of high (positive) and low (nega-
tive) streamwise velocity fluctuations on horizontal (z1-z2)
planes near the central or core region of the channel. These
large-scale streaks possess much greater length scales than the
classical wall streaks observed on near-wall horizontal planes of
Poiseuille flow. When visualizing the flow on spanwise-vertical
(z2-x3) planes the large-scale streaks appear as cell patterns
extending nearly from top to bottom, similar to the Langmuir
supercell patterns observed in shallow shelf seas. The span-
wise length of the Couette cells and streaks is approximately
equal to the channel height or depth (Lee and Kim, 1991).
Lee and Kim showed that the presence of the Couette cells
and streaks were not an artifact of the limited streamwise (z1)
and spanwise length (x2). Through direct numerical simula-
tion, Papavassiliou and Hanratty (1997) provided insight into
the dynamics governing the cells and streaks. They found
that the large-scale Couette cells can receive energy from the
small-scale turbulence, contrary to the common energy cas-
cade notion in which the large-scales always pass down energy



to the small-scales.

After a brief description of the governing equations and
numerical method, we focus on the major differences in the dy-
namics between wind shear-driven Couette flow and the same
flow with LC under the conditions observed by GW.

GOVERNING EQUATIONS AND NUMERICAL METHOD

Constant density flow is assumed because the shallow water
Langmuir supercells described by GW were observed in ap-
proximately neutrally stable water. The non-dimensionalized,
filtered, incompressible Navier-Stokes equations augmented by
the CL vortex force accounting for LC are
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where an over-bar denotes a filtered quantity, p is the filtered
modified pressure (McWilliams et al., 1997) divided by density
p, and the filtered velocity is t = (41,2, us) in coordinate
system x = (21, z2,23) (figure 1).

The filtered vortex force on the right hand side is

FCL =us Xw (2)

modeling the mechanism behind LC (Craik and Leibovich,
1976); i.e. the interaction between surface gravity wave Stokes
drift velocity, us and the shear flow represented by the filtered
vorticity w. The mechanism consists of tilting and stretch-
ing of vertical vorticity into the horizontal by the Stokes drift
velocity, resulting in enhanced streamwise vorticity.

The equations are non-dimensionalized using the friction
velocity ur = (Tsurface/p)'/? and the channel mid-depth § =
H/2, thus leading to a Reynolds number Re; = u,d/v. The
non-dimensionalization of the CL force, Fcr., gives rise to the
turbulent Langmuir number, Lar = (u7-/us)1/27 appearing
in (1). Note that Lat = oo corresponds to us; = 0, that is
zero Stokes drift velocity and thus no LC. As Lar — 1 LC
becomes comparable to the shear flow, while for Lar < 1 LC
dominates. The Stokes drift velocity appearing in (1) is

. cosh[2k(z3 — H)]
s = s ( 2 sinh2 (kH) ) e ®

(Phillips, 1967) where e; is the unit vector in the x1-direction.
The coefficient us, also appearing in the definition of Lar, is
defined as u. = oka?, where o is the dominant frequency, k
is the dominant wavenumber and a is the amplitude of the
surface gravity waves.

The subgrid-scale (SGS) stress in (1) is defined as

T=u®i—-ulu (4)

where the term u ® u gives rise to a closure problem. The
deviatoric part of T is parameterized and the dilatational part
is added to p. The following parameterization (Smagorinsky,
1963) is used:

dev{T} = 2vpV*u (5)

where the eddy viscosity is given as

vy = (CsA)?|Vea| (6)

and
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are the filtered strain rate tensor and its norm, respectively.

The coefficient (CsA)?, is computed dynamically using the
procedure described by Lilly (1992).

In our LES we use a free-slip, rigid-lid approximation for
the water surface thus filtering out surface gravity waves.
Zhou et al. (1998) performed simulations of LC with a surface
wavy boundary layer due to a second order Stokes wave and
compared results to a simulation with a free-slip, rigid-lid ap-
proximation including the CL vortex force. The simulations
were in general agreement, demonstrating the validity of the
free slip, rigid-lid model with CL vortex forcing.

The numerical method used employs a hybrid spec-
tral/finite difference discretization. Horizontal directions (z1
and x2) are discretized spectrally via fast Fourier transforms
and the vertical direction (z3) is discretized via high order
(fifth and sixth) compact finite difference schemes, allowing
for grid stretching in the vertical in order to resolve expected
strong vertical gradients in the velocity. Boundary conditions
are no-slip velocity at the bottom wall and constant shear
stress and zero normal flow (23 = 0) at the top rigid-lid
surface. Periodicity is assumed in the horizontal directions.
Time-marching consists of a second order time-accurate frac-
tional step scheme.

NUMERICAL RESULTS

In this section, we compare the following two cases: 1)
Couette flow driven by a surface wind stress with CL vortex
forcing and 2) Couette flow driven by a surface wind stress
without LC. In both cases, the constant surface wind stress
is applied such that Re; = 180. Case 1) is characterized
by Lar = 0.7 and A = 6H. These values for Lat and A
are representative of the coastal shelf shear flow with Lang-
muir supercells observed by GW. Case 2) is characterized by
Lat = oo, thus no LC. Note that Re, representative of the ob-
servations is much greater than that of the present simulation
(Rer = 180). Although not reported here, simulations with
LC at higher Reynolds numbers were performed without great
changes in the results, demonstrating that the simulation at
Re,; = 180 is not adversely affected by low Reynolds number
effects.

Following the direct numerical simulations of traditional
Couette flow at about Rer = 170 of Lee and Kim (1991), the
domain dimensions for both cases, 1) and 2), were chosen as
(L1/6,L2/6,L3/6) = (47,87/3,2). Here L1, Ly and L3 are
the lengths of the domain in the x1-, x2-, and xz3-direction,
respectively. The computational grid for the Couette flow
with no LC contained 33 points in z1, 65 points in x2 and
65 points in z3 (33 X 65 X 65). A greater number of points
in the x3-direction was required for Couette flow with LC in
order to resolve stronger vertical gradients, thus the grid had
(33 x 65 x 97) points. The non-dimensionalized time step was
chosen as 0.0025 and 0.005 for the cases with and without
LC, respectively, in order to yield temporal accuracy and not
violate the CFL condition.
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Visualizations

Figure (2) shows contours of instantaneous streamwise fluc-
tuating velocity, “/1: on the horizontal plane at the middle of
the channel. In both cases of the Couette flow (with LC and
without LC) there is at least one pair of high- and low-speed
regions or streaks highly elongated in the streamwise direc-
tion (z1) and alternating in the spanwise (z3) direction. In
the flow with no LC shown in figure (2b) the spanwise length
of each region is approximately equal to the depth, H. An-
imations reveal that when the CL vortex force is turned on,
the high-speed regions merge, as the flow transitions from two
pairs of streaks to one pair. Figure (2a) shows the one-pair
structure characterizing Couette flow with LC.

(a) Simulation with LC

Figure 2: Instantaneous contours of u} on horizontal (z1-

x2) plane at middle of channel (z3 = H/2) in Couette flow

with and without LC. Fluctuations v/ are normalized by the

mean centerline streamwise velocity, Uc. -------- s uh fUec > 0;
u} /Ue < 0.

Figures (3) and (4) show the mean vertical structure of the
fluctuating velocity components in the flow with and with-
out LC, respectively. Overall, both flows exhibit positive
and negative spanwise cell structures in each of the fluctu-
ating velocity components; the flow with LC has a spanwise
one-cell structure while the flow without LC has a spanwise
two-cell structure. Furthermore, in the mean, flow with LC
has much stronger maxima and minima in all fluctuating ve-
locity components: extrema of <<u}>t>z, <Kuy>¢>4, and
<K wuh>¢>g, are approximately 3, 2.5 and 10 times greater,
respectively.

As seen in figure (3a), the flow with LC is characterized
by intensification of positive <<u/1>t>(1;1 near the surface and
near the bottom, in close agreement with the observations of
GW. In the case of the flow without LC, there is no such
intensification as the magnitude of << u} >¢>4, is roughly
uniform (either positive or negative) in most of the water col-
umn. Note that in the observations, quantities are averaged
over time only and not over time and streamwise direction or
over time and horizontal directions, as is done here.

In both flows, a region of positive << u’l >¢>4, coincides
with a region of negative <<u’3>t >z, and vice-versa. Regions
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of positive <<uf>;>z, are referred to as upwelling limbs and
regions of negative <<uf>¢>;, are referred to as downwelling
limbs. At mid-depth in the flow with LC, the ratio of spanwise
length of the upwelling limb to spanwise length of the down-
welling limb is 1.6, in close agreement with the observational
value of 1.5. In the flow without LC this ratio is approximately
1. Additionally, the downwelling limbs in the observations and
in the the flow with LC possess greater intensity (magnitude)
of <<u’3>t >4, than their adjacent upwelling limbs. In the the
flow without LC, the magnitude of <<uf>;>z, in the down-
welling limbs is nearly the same as in the upwelling limbs.
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Figure 3: Contours of averaged fluctuating velocity compo-
nents (normalized by U.) on x2-z3 plane for Couette flow with
LC. <<->¢>4, denotes averaging in time and over 1. <->
corresponds to averaging in time and over x1 and x32.

Furthermore, as seen in figures (3c) and (4c), in both flows
a region of upwelling coincides with a region where negative
spanwise (z2) gradient of <<u'2 >¢>4, occurs near the sur-
face. The opposite trend is seen near the bottom; a region
of upwelling coincides with a region where positive spanwise
gradient of <<u’2 >¢>4, occurs near the bottom. Finally, in
the flow with LC, extrema of <<u’2>t>x1 occur at the sur-
face (similar to the field observations), in contrast to the flow
without LC where they occur in the upper third of the water
column.

Color versions of the previous figures may be found in
www.ccpo.odu.edu/~tejada.

Mean Profiles, Resolved Reynolds Stresses and Invariants

Figures (5a) and (6a) show mean streamwise velocity for
Couette flow with LC and without LC, respectively. In both
cases the mean spanwise velocity <us> and the mean vertical
velocity <us> (not shown) are nearly zero. A major difference
between the two flows occurs in <wuj; >. In the flow with
LC, the LC serves to homogenize <ui> throughout most of
the water column. This behavior can be seen in figure (6a)
where <u1> is roughly constant throughout most of the water
column. In the flow without LC, <wuj> has non-zero slope
throughout the water column.
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Figure 4: Contours of averaged fluctuating velocity compo-
nents (normalized by U.) on x2-z3 plane for Couette flow

without LC.
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Figure 5: Profiles of mean velocity and resolved Reynolds
stresses for Couette flow with LC. In (a): o , <wui>; x ,
<uz>. In (b): o, <uju|>; x , <uhub>; + , <ujuf>. In (c):
o, — <wjub>; x , — <wjuf>; + , — <uhul>. Velocities and
and stresses are normalized by U, and U2 respectively.

Figures (5b) and (6b) show resolved normal Reynolds stress
components for Couette flow with and without LC, respec-
tively. There are several distinguishing differences between
the two cases. First, the LC case possesses larger values
of <whuf > and < ujuf > than the case without LC, es-
pecially in the lower part of the water column. In the no
LC case, ordering of components is <uju}> > <ubul>
> <wujuf > for the entire water column. In the LC case,
this ordering changes, as in the lower part of the water col-
umn <ujuf > > <whuh> > <wufuf > while in the
middle <uju} > > <wufuf> > <ubuj>. Towards
the upper part of the water column the ordering changes to
<whuh > > <wjui> > <wujuf >, and at the surface
it settles back to <u{u}> > <ubul> > <ujuf>. The
normalized magnitudes of the resolved normal Reynolds stress
components in the LC case are much closer to those recorded
in the field observations of GW, especially in the lower part
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Figure 6: Profiles of mean velocity and resolved Reynolds
stresses for Couette flow without LC. Symbols follow the same
convention as in figure (5).

of the water column.

Figures (5¢) and (6c) show resolved shear Reynolds stress
components for the flow with and without LC, respectively.
<ujuf> components for both cases are close to each other in
magnitude throughout most of the water column; for the LC
case, <ujuj> attains slightly greater values, especially near
the middle of the water column. The normalized magnitude of
<u} ué> in both cases is in close agreement to that recorded in
the field observations. Additionally, for both cases, <u’2u’3> is
nearly zero throughout the entire water column, similar to the
observations. For Couette flow without LC, this also occurs
with <wjul,>. In Couette flow with LC, <uju}> is nearly
zero throughout most of the water column, except for the bot-
tom part where the CL vortex force induces slight variations.
Of importance is the fact that the data recorded in the field
observations exhibit a <uju}> component which is far from
zero, perhaps due to a non-zero mean velocity in x2, <uz>
(see GW). This is in contrast to the current simulations for
which <ug> is nearly zero.

Figures (7) and (8) show maps of the Lumley invariants
(IT = by5bj; and IIT = by;b;1by;, (Pope, 2000)) for Couette flow
with and without LC. The quantity 11'/2 serves as a measure
of the magnitude of the anisotropy, while the location of the
coordinate (111/27 1111/3) serves as a measure of the shape of
the anisotropy. Figures (7) and (8) show the trajectories of
the Lumley invariant maps varying from z3/H = 0 (bottom
wall) to z3/H = 1 (top surface). For both flows with and
without LC, the fluctuating motion is two-component (near
the top bounding curve of the Lumley triangle) very close to
the bottom wall because <wufjuf> is much smaller than the
other two normal Reynolds stress components. In the case of
Couette flow without LC, the fluctuating motion moves close
to a cigar-shaped axisymmetric state (near the right hand side
edge of the triangle) as the distance away from the bottom
wall increases. The reason for this behavior is that <uju}>
is larger than <uful,> ~ <ujuf}>, especially in the middle
region of the water column. In the upper-half region of the
channel, the fluctuating motion moves back towards the two-
component state.

In contrast, for the case with LC, as distance from the
wall increases the turbulence moves towards a pancake-shape
state as the trajectory of the map goes into the interior of
the triangle towards the left hand side edge. The reason for
this behavior is that <uju}> and <ufu/,> are much greater
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Figure 7: Lumley triangle for Couette flow with LC: o, 0 <
x3/H <1/3;0,1/3 <xz3/H <2/3;0,2/3<x3/H <1. The
solid square denotes the map at the first point off the wall.
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Figure 8: Lumley triangle for Couette flow without LC. Sym-
bols follow the same convention as in figure (7).

than <wufuf> throughout much of the bottom third portion
of the water column. This is no longer true in the mid-depth
region as the ordering <wju}> > <ujui> =~ <ulul>
holds and the turbulence shifts back towards an axisymmetric
cigar-shape state. In the upper-half of the channel, as distance
towards the top surface decreases, the turbulence moves back
towards the pancake-shape state. At the surface, the tur-
bulence assumes an approximately two-component isotropic
state (the upper left hand side vertex of the triangle) because
<uju)> ~ <uhub> and <ujuf> = 0. Of great importance is
that the c-shaped trajectory of the Lumley invariant map for
Couette flow with LC (figure (7)) closely resembles the shape
of the map based on data from the field observations of GW.
Furthermore, it highlights the vast difference in turbulent mo-
tion between Couette flow with and without LC.

Budgets

Figure (9) contrasts the budget terms for transport of mean
resolved turbulent kinetic energy (TKE) in both flows close to
the bottom wall. The main difference here is the presence of
the CL vortex force (denoted by plus symbols in figure (9a))
acting as a sink in the flow with LC. This sink is partially
balanced by pressure transport (denoted by the dashed line).
In the flow without LC (figure (9b)), the CL vortex force is
zero and thus the pressure transport is practically dormant.
At the wall, in both cases, viscous diffusion (denoted by dots)
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serves to balance viscous dissipation (denoted by squares).

Near the top surface, the transport of mean TKE follows
different dynamics in the two cases, as depicted by figure (10).
In flow with LC, the CL vortex force acts as a source of TKE,
reaching a maximum at the top surface and is mostly balanced
by a negative pressure transport. In the case with no LC, the
pressure transport is nearly zero given that the CL force is
zero. The rest of the terms in the two cases only show slight
differences.

(a) Simulation with LC
0.4 T T T

Budget terms

Budget terms

15 20 25

Figure 9: Near bottom wall budget terms in transport equa-
tion for turbulent kinetic energy. Terms are normalized by
viscous scales (Pope, 2000); location of wall is at :r;' = 0.
, turbulent transport; ———— | pressure transport;
— - — , SGS transport; e e e , viscous diffusion; o, viscous
dissipation; ¢ ;, SGS dissipation; x , production by shear; + ,
production by CL force (Langmuir); o , sum of all terms.

(a) Simulation with LC
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Figure 10: Near top surface budget terms in transport equa-
tion for resolved turbulent kinetic energy. Terms are normal-
ized by viscous scales; location of top surface is at x;,r = 0.
Symbols follow same convention as in figure (9).

Figures (11) and (12) contrast the budget terms for trans-
port of — <u'1u’3 > (the dominant component of the shear
Reynolds stress) in Couette flow with and without LC. In the
case with LC, near the wall (figure (11a)) pressure transport
serves to balance CL vortex forcing and pressure-strain redis-



tribution (denoted by stars). At the wall, in the case with no
LC (figure (11b)) pressure transport balances pressure-strain
redistribution, as the CL vortex force is zero. For the region
wg' > 5 appearing in the figure, production by shear (denoted
by the x-marks) plays a bigger role than pressure transport as
they both serve to balance pressure-strain redistribution. In
the simulation with LC, production by shear is negligible as
most of the source is provided by turbulent transport.

It is remarkable that the near-wall dominant terms in the
flow without LC (i.e. pressure transport and pressure-strain
redistribution) are an order of magnitude smaller than the
near-wall terms in the flow with LC. This same disparity is
also noted between dominant terms near the top surface (fig-
ure (12). In the case with LC, the dominant terms are once
again pressure transport, the CL vortex force, and pressure-
strain redistribution. Meanwhile in the case without LC, the
dominant terms are production by shear, pressure transport,
turbulent transport, and pressure-strain redistribution.

(a) Simulation with LC
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Figure 11: Near bottom wall budget terms in transport equa-
tion for — <wufuf>. Terms are normalized by viscous scales.
* pressure-strain redistribution; the rest of the symbols follow
the same convention as in figure (9).
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Figure 12: Near top surface budget terms in transport equa-
tion for — <u’1ug>. Terms are normalized by viscous scales.
Symbols follow the same convention as in figure (11).

CONCLUSIONS

Stress driven Couette flow with LC is very different from
that without LC. The differences are present in all of the di-
agnostics shown. Also, the presence of LC results in greatly
enhanced vertical mixing. Finally, basic features of the flow
with LC are in general agreement with the field observations
of GW.
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