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ABSTRACT

We investigate the combined effects of rotation and stable
stratification on homogeneous turbulence, which render the
flow very anisotropic at all scales : coherent structures are de-
formed either to pancake- or cigar- like shapes. Accordingly,
energy is distributed differently in spectral space depending
on the relative amplitudes of rotation/stratification, but di-
rectional spectra exhibit anisotropy at almost all scales, down
to the smallest. Moreover, using a poloidal/toroidal decom-
position of the velocity, we show that an additional coupling
mode appears in the strongly stratified case when even slow
rotation is present, with respect to the purely stratified case.

INTRODUCTION

Homogeneous isotropic turbulence has been studied ex-
tensively with theoretical, experimental and numerical ap-
proaches. The knowledge of fundamental physical processes
from these studies are built into models, which treat most
complex flows, such as inhomogeneous or multiphase flows.
The models assume local homogeneity and isotropy of turbu-
lence at length scales smaller than a predefined cut-off scale.
However, a lot of models which are based on isotropic turbu-
lence are applied to flows with a systematic anisotropy. In
these cases, even at very small scales isotropy of turbulence is
a priori not guaranteed and according to our studies far from
being fulfilled for stably stratified rotating turbulence.

The basic set of equations describing homogeneous rotating
and stably stratified turbulence is the Boussinesq approxima-
tion in a rotating frame of reference. The fluctuating velocity
field w and buoyancy field b are governed by

fu—vVlu=-Vp—u-Vu—-2Qnxu+bn (1)
B +u-V)b—xVih=—-N?n-u, (2)

where p, v and x are the compensated pressure, the kinematic
viscosity and the thermal diffusivity respectively. We choose
a Prandtl number of v/x = 1. And, due to incompressibility
V -u = 0. The two parameters characterizing stratification
and rotation are N, the Brunt-Vaisala frequency, and €2, the
system rotation. A lot of works concentrate on either rotating
[1, 2] or stratified [3, 4, 5, 6] turbulence. Here we will system-
atically explore rotating and stratified turbulence, therefore
introducing the non-dimensional parameter oo = 2Q/N.

Linear solution of the Boussinesq equations

As both the buoyancy force and the Coriolis force act lin-
early on the flow field, fundamental properties of this system
can already be studied with the linearized system of equations,
which can be solved analytically due to the absence of the non-
linear advection term. They are often used as a basis for the
developement of more complex models. The simplest repre-
sentation of solutions are found in Fourier space, as pressure
as well as mass conservation effects can be implicitly treated
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by using a projection operator. The solution of the system is
done as an expansion of transverse plane waves

d(k,t) =Y o4 NeT 0t (N7 9(k,0))  (3)

where N are the eigenvectors of the linearized equations,
and depend on k. Accordingly, the dispersion relation 02 =
N2sin? 0 4+ 492 cos? 0 depends on the direction of the vector
k. Keeping in mind that equation 3 is the solution of the lin-
earized Boussinesq equations, it can easily be seen that the
velocity field is naturally decomposed in a linearly oscillat-
ing inertio-gravity wave part and a linearly time-independent
vortex part. In meteorology, these two parts of the flow field
are known as ageostrophic and quasigeostrophic parts respec-
tively.

Divergence-free flows in Fourier space can be represented
with two-components, as no velocity component along the
wave vector k is possible. The Craya—Herring frame, a local
frame of reference with unit vectors

el = ‘ziz‘ , e = % x el | e® = % (4)
allows the decomposition of the three-component Cartesian
velocity field into a new two-component field that correspond
to a mathematical decomposition into a poloidal and a toroidal
part. The buoyancy can be added to this vector as a fully
imaginary third component, reducing the problem of solving
the system in Fourier space for five unknown iz, iy, 4z, b, p to
solving it for a three-component vector ©. A further advantage
of this system is that the new vector squared is proportional to
the invariant of the system, the potential and kinetic energy
combined, instead of a proportionality only to kinetic energy.
Note, that the poloidal/toroidal decomposition differs for the
general case from the wave/vortex decomposition outlined in
the previous paragraph. They will only be identical for pure
stratification.

These decompositions are also valid for the spectral 274-
order tensor ®;;, defined as

<4 (p, t)i;(k,t) > /2 = &;5(k,t)é(k — p). (5)

The linear evolution of energy from arbitrary initial condi-
tions can therefore be analytically known using equation (3).
However, the linear energy evolution is a complex problem
which depends on the ratios of kinetic to potential energy and
rotation to stratification. Even the asymptotic tendencies of
energy transfers between the toroidal, poloidal and potential
parts are not trivial. This shows the importance of a balanced
energy budget in initialing the simulations, as anisotropy is
otherwise created due to a simple asymmetry of energy on
different modes. Nevertheless, if the velocity field is initially
equipartitioned between the toroidal, poloidal and potential
mode, no anisotropy can be created by linear mechanisms.

Direct numerical simulations



The formation of structures such as pancakes or cigars ob-
served in dominantly stratified turbulence and dominantly
rotating turbulence is only possible with nonlinear mod-
els. A variety of closure models have been tested on
anisotropic turbulence, where statistical two-point closures
such as the eddy-damped-quasi-normal-Markovian, the direct-
interaction-approximation or the test-field model play a dom-
inant role.

Although the statistical two-point models can reproduce
a wide range of phenomena observed in rotating and strati-
fied turbulence, they are based on assumptions, not necessary
in direct numerical simulation (DNS). As we treat homoge-
neous turbulence, a fully de-aliased pseudo-spectral colloca-
tion method in a cubic box of length 27 with periodic bound-
ary conditions is used.

Due to necessarily limited computer resources, the reso-
lution and therefore the Reynolds number is limited. The
high accuracy due to weak approximations but only moderate
Reynolds numbers has to be compared to high-Reynolds num-
ber attainable with statistical models which include a degree
of assumptions and hypotheses. Models are built to describe
only certain statistical quantities, whereas DNS gives a se-
ries of full velocity fields, enabling the generation of statistical
quantities directly from the flow field.

The flow field is initialized in Fourier space with a narrow-
band energy spectrum and the time scheme is third-order
Adams-Bashforth with exact integration of the viscous term.
All DNS presented here are freely decaying. The buoyancy
and system rotation are applied after an initial isotropic pre-
calculation, so to a velocity field with fully established triple
correlations. The abrupt introduction of an anisotropic force
disequilibrates the flow field. The fluctuations in the statistics
due to this discontinuity decay over a few turbulence turnover
times. The runs use 5122 collocation points and Rey = 160
for « = 10 and Re) =~ 120 for o = 0.1. Stably stratified and
rotating turbulence exhibit the following features:

e The total dissipation of energy is reduced. The reduction
is moderate for dominantly stratified turbulence and very
high for dominantly rotating turbulence. This is an effect
of less efficient cascading processes.

e Spontaneous formation of coherent structures from an
initially isotropic turbulence field are shown in figure
1. Iso-enstrophy surfaces in dominantly stratified turbu-
lence resemble horizontal pancakes while in dominantly
rotating turbulence they resemble vertical cigars.

e The directional distribution of energy is altered. For
dominantly stratified cases, the energy is concentrated
in a thin vertical cone of Fourier space [6]. For domi-
nantly rotating cases, the energy is concentrated quasi-
horizontally, outside a flat cone of the Fourier space.
However, even with very strong stratification or rotation,
the energy distribution in Fourier space occupies a finite,
non-vanishing volume, excluding a complete reduction to
only horizontal velocity components or a complete two-
dimensionalization of the velocity field.

e Directional spectra show a variety of scaling laws and
a dependence of these laws on the direction apart from
exhibiting a steeper spectrum and so a reduced cascade.
The differences of spectra for different directions suggest
that not only a shell-to-shell cascade has to be studied,
but also a directional inside-one-shell cascade or a com-
bination of the two can appear in anisotropic turbulence
[4]. This is an effect of the different ways a vector triad
can be constructed in anisotropic turbulence, compared
to isotropic turbulence.

Figure 1: Iso-enstrophy surfaces of a dominantly stratified case
(a) and a dominantly rotating case (b).

e The directional velocity correlation length scales, de-
fined in the following section, show typical structures.
Stratified turbulence exhibits normally growing horizon-
tal scales but very short vertical scales. Scales in domi-
nantly rotating turbulence show the opposite effect.

e The structure of the velocity fields has been found to
arrange themselves in the following way.

Dominantly stratified turbulence shows quasi-horizontal
velocity fields which are decorrelated in the vertical. The
velocity patterns due to waves are difficult to detect due
to the dominance of the horizontal velocity components.
The vertical component, however, is important for en-
ergy exchange mechanisms.

Although the velocity field of dominantly rotating turbu-
lence shows a columnar structuring, it does not favour a
vertical or horizontal component of energy. Furthermore,
although the horizontal velocity components in one col-
umn show little vertical variability, the vertical ones do
show significant changes.

Therefore, the velocity fields in stratified turbulence can
be described as a quasi two-component 3D flow, while the
description of rotating turbulence as three-component
2D velocity field might not be correct.

e The vorticity field of stratified turbulence shows domi-
nance of the horizontal component, an effect of the shear
layers between pancakes. Dominantly rotating turbu-
lence shows a much higher vertical vorticity and a good
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correlation in the vertical. So the vorticity vector field
of rotating turbulence much more approaches a 2D field
than the velocity vector field. Furthermore, the vorticity
vector field shows an asymmetry between positive and
negative vertical vorticity. This might be due to produc-
tion of vorticity by system rotation.

e Anisotropy is found down to the smallest scales, and
anisotropy due to rotation seems to be largest at these
smallest scales. Therefore there is a need for anisotropic
sub-scale models which can be used in in large eddy sim-
ulations where rotation or stratification is present.

EULERIAN STATISTICS

Directional Correlations Lengths

A good indicator of structural anisotropy in the flow are
directional correlation length scales. Linear theory applied to
initially isotropic data with equipartition of poloidal and po-
tential energy strictly conserves isotropy of any single-time
double correlations as it conserves the structure function.
They are equal in horizontal and vertical directions, in con-
trast to results from full non-linear DNS. In isotropic tur-
bulence, longitudinal length scales are twice cross correlation
ones, so for easier comparison we show twice the magnitude
of cross correlation length scales.

Velocity correlation lengths. These DNS results, shown in
figure 2(a), can interpreted as directional integral length-scales
and are defined as

LE() = s I < uwi@ui(@ + day) > dan (6)

for horizontal velocity components u; and different separation
directions n (vertical and horizontal). As they are calculated
by integrating a spectrum, they mainly show the anisotropy
of the energy containing scale for the respective spectrum.

The elongation in the horizontal as well as the reduction
in the vertical length scales clearly illustrate the pancake like
structures observed for dominantly stratified runs in figure 1.
Due to the high stratification of the DNS, the vertical scale de-
creases after an initial short increase and reaches a final value
of close to 1/30 of the calculation box height. The horizontal
length scale grows under the effect of energy decay to about
1/10 of the box length at the end of the run with no definite
evolution law. The final ratio of the vertical to horizontal scale
is approximately 3 for the case with o = 0.1

Dominant rotation cases exhibit a scale elongation of L7 in
the vertical, illustrating the formation of vertically elongated
structures shown in figure 1(b). The horizontal correlation
lengths of the case with o = 10. follow an evolution close to
the isotropic case, although, in the latter, Reynolds numbers
are 70% smaller than in the former. The ratio of vertical
to horizontal length scales is approximately 3. The vertical
velocity correlation length scale reaches values of up to one
fifth of the box height. Validity of runs with large values of
correlation lengths can be influenced by the periodic boundary
conditions. However, due to no abrupt increase in scales, an
effect expected due to vortex stretching, we believe that the
run is still valid.

Vorticity correlation length scales. They are shown in fig-
ure 2(b) and defined similarly to equation 6, but by correlating
vorticity instead of velocity. To find quantitative aspect ratios
of enstrophy iso-surfaces as in figure 1, length scales based
on vorticity rather than velocity are more appropriate. Sim-
ilar to velocity correlation length scales representing energy
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Figure 2: Time evolution of the directional velocity correla-
tion length scales: dashed lines: L%, solid lines: LZ, Time
evolution of the directional vorticity correlation length scales:
dashed lines: LZ,_,,_, solid lines: L, .

containing scales, the vorticity correlation length scales are
found close to the enstrophy containing scales, so characteriz-
ing anisotropy in the region of the Taylor micro scale.

Isotropic vorticity length scales tend to grow slower than
the ones from anisotropic runs. Apart from illustrating pan-
cakes and cigars shown in figures 1(a) and (b) respectively, the
high anisotropy found in vorticity length scales illustrates the
absence of isotropy even at scales close to the viscous range,
underlining the fact that isotropic sub-grid models will en-
counter difficulties when modeling anisotropic turbulence. No
asymptotic value seems to be reached for the sizes or aspect
ratios of the structures. This implies that no asymptotic value
is reached for small scale anisotropy.

The vertical length scale LZ,_,, is directly linked to vertical
columns with average heights similar to the correlation length.
The horizontal length scale Lf,_,  for rotation dominant cases
can be interpreted as an average horizontal distance between
two cigars, as the vertical vorticity is the dominant component
of the total vorticity. This distance is growing significantly



Figure 3: Integrating surface for angular dependent spectra.

faster than L, ,, in the isotropic case.

For dominantly stratified cases, the horizontal vorticity
is dominating, so the correlation length of vertical vorticity
might not be the dominant feature in the flow. However,
LZ .. will still give an indication of the horizontal scale
of structures. For dominant stratification, LZ, ,, grows at
around the same rate as the isotropic case. Seemingly, this
quantity has a connection with the thickness of the pancakes,
but at a second look the thickness is more probably defined by
vertical shear and so horizontal rather than vertical vorticity.

A surprising feature shown in figure 2(b) is the similar
growth of the vertical correlation length LZ_, for dominant
rotation and the horizontal correlation length L{, , for dom-
inant stratification. The means that pancake like structures,
shown in figure 1, grow horizontally at roughly the same rate
as cigar shaped like structures in the vertical.

Angular energy spectra

In contrast to isotropic turbulence, the transfer of energy
over the polar angle 6 in connection with transfers between the
toroidal, poloidal and potential mode is of prime importance
in the decay of anisotropic turbulence. Angular energy spectra
defined as

—1
E(kn,em):% [ f;’;_*f;’//j cos@d&} > @tk atk) (1)

|kleln 0k e m

are similar to spherically averaged spectra, but integrated
only over a sector Af of a spherical shell shown in figure
3. Directional anisotropy of the energy distribution leads to
spectra which do not collapse for different angles 8. On the
other hand, polarization anisotropy leads to differences be-
tween toroidal, poloidal and potential spectra.

Dominant rotation. We show the toroidal, poloidal and po-
tential directional spectra on figures 4a,b,c. For comparison,
an isotropic spectrum is shown with dotted line. The curves
marked cos@ = 0 correspond to quasi-horizontal directions
and show cascade laws of around k2. The curves correspond-
ing to quasi-vertical directions are marked cos# ~ 1 and show
cascade laws of around k~4, which approaches slopes normally
found in viscous ranges.

The main three observations to be made are the increased
steepness of slopes compared to isotropic turbulence, the sim-
ilarities between toroidal and poloidal parts and the highest
anisotropy found at the largest wave numbers. This anisotropy
attains more than five orders of magnitude difference between
energy in the horizontal and vertical direction.
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Figure 4: Poloidal (top), toroidal (middle) and potential (bot-
tom) angular spectra for DNS run with o = 10. Dotted curves
show spherical spectra from the corresponding isotropic run
for comparison.
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The large anisotropy at small scales combined with the data
presented in figure 2 indicates a trend toward a two-component
vorticity field correlated in the vertical direction, with a ver-
tically correlated three-component velocity field.

The total potential energy in figure 4(c) is about half an
order magnitude smaller than the energy in either toroidal or
poloidal mode. However, as the cascade of potential energy
is more efficient than in either poloidal or toroidal mode, the
potential energy density at smallest scales is of the same or-
der of magnitude as the kinetic energy modes. In contrast to
having simply a reduced cascade in cases with pure rotation,
this mechanism succeeds in feeding kinetic energy back into
the system at large k, after an intermediate transfer to the
potential energy mode. In other words, the energy manages
to bypass the normal cascade inside one mode in utilizing the
more efficient cascade in the potential mode. This is possible,
because of the efficient linear transfers of energy exchange be-
tween, on the on hand, potential and poloidal parts, and on
the other hand poloidal and toroidal parts. To sum up, the
parameter o = 10 exhibits large scale mechanisms of energy
cascade similar to the rotating case. However, the interaction
of the poloidal mode with the potential mode allows a mecha-
nism which generates turbulent kinetic energy at the smallest
scales of the poloidal mode, without necessitating the normal
cascading processes.

The Reynolds number is just large enough in the high res-
olution simulations to show trends concerning the slope of a
possible inertial range. The spectra exhibit a range of dif-
ferent slopes between k~2 for the quasi-horizontal direction
to k—*% for the quasi-vertical one. Standard spectra of rotat-
ing turbulence can therefore exhibit k~3 slopes without any
mechanisms of 2D turbulence simply by averaging over all
polar angles 6 [7], which answers the two-dimentionalization
question raised in some works (e.g. [1]). The spectra of the
potential energy is smaller at larger scales due to the relatively
weak stratification.

Dominant stratification. Figures 5a,b,c show the toroidal,
poloidal and potential angular spectra for the run with a =
0.1. Again, for comparison, we show an isotropic spectrum
with dotted line. The curves marked cos@ =~ 0 correspond
to spectra with a median angle of 6 = 47 /10 directions, the
curves marked cosf =~ 1 correspond to a median angle of § =
7/10 and the other curves have ascending values for 6 from
top to bottom.

First, although the spectra are still steeper than their
isotropic counterparts, they are less steep than in figure 4.
Second, the poloidal and toroidal parts of the energy show
large qualitative and quantitative differences, but the poloidal
and potential parts of the energy show similarities, especially
so in the horizontal direction. Third, with the exception of
the vertical spectrum of potential energy, the anisotropy of
the flow is found exclusively in the toroidal part of the veloc-
ity field at intermediate wave numbers. The rotation, which
is an order of magnitude smaller than the stratification, takes
effect after a considerably longer time. This is consistent with
the fact that the system has had time to fulfill only four rota-
tional periods compared to forty Brunt-Vaisala periods at the
end of the run.

Similar to cases with pure stratification, the spectra of the
vortex/toroidal mode exhibit slopes of approximately k—3:3
for the quasi-horizontal spectrum in figure 5. The quasi-
vertical parts have a maximum at larger k and a smoothly
changing slope between largest and smallest scales. The max-
imum difference in spectral energy between the vertical and
the horizontal direction is nearly four orders of magnitude,
found in the toroidal spectrum.
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Figure 5: Poloidal (top), toroidal (middle) and potential (bot-
tom) angular spectra for DNS run with a = 0.1. Dotted curves
show spherical spectra from the corresponding isotropic run
for comparison.



The inertio-gravity wave part, consisting of the poloidal
and potential modes, shows a collapse and therefore, to some
degree, directional isotropy, with a slope close to k—2. Fur-
thermore, apart from the quasi-vertical potential spectrum,
poloidal and potential spectra show a high similarity, due
to the linear interactions between them. The quasi-vertical
potential spectrum dominates over all other wave spectra by
more than one order of magnitude at k ~ 20, meaning that
virtually all the potential energy is found in at 6 ~ 0, a sig-
nificant difference to turbulence with pure stratification. This
suggests a linear exchange mechanism in the vertical direction
between the potential and toroidal spectrum not existing for
pure stratification.

This opens up a mechanism for a faster energy decay, com-
pared to turbulence with pure stratification. Layering of the
dominant toroidal part of the energy in vertically de-correlated
sheets of horizontal velocities does not allow a direct cascade.
The energy in the poloidal and potential parts exhibits a classi-
cal cascade with a slope close to k~2 for large enough Reynolds
numbers. However, the direct link between the potential and
the toroidal mode creates a different energy distribution in
the poloidal and the potential energies, consecutively allow-
ing a more efficient cascading process of the quasi-vertical
toroidal energy. The dependence of these phenomena on non-
dimensional parameters such as Froude, Rossby or Reynolds
numbers , and the influence of initial equipartition of toroidal,
poloidal and potential energy are still to be studied.

CONCLUSIONS

The linear evolution of the Eulerian velocity field is com-
pletely predictable, as the evolution is determined by its initial
conditions. Solutions for the velocity field, but also for higher
order velocity correlations are found and so the behaviour
of arbitrary Eulerian statistical quantities can in principle
be calculated. Within this deterministic picture of the lin-
earized Boussinesq approximation no irreversible anisotropy
can be created, only marginal anisotropy through angular
phase-mixing of waves, which result from averaging over dif-
ferent k-directions. This means that the total—including
potential—spectral energy evolution cannot vary and coherent
structure formation is inhibited. However, large anisotropic ef-
fects can be observed for sets of distinct initial conditions. If
these are observed on purpose in DNS or introduced by a not
sufficiently careful initialization, needs to be evaluated case by
case.

DNS of the Boussinesq equations gives a fully nonlinear
evolution of the flow field which naturally develops irreversible
anisotropy in the absence of external forcing, i.e. if the energy
is allowed to decay freely . The parameter @ = 2Q/N
determines the characteristic evolution of the turbulence. We
illustrate two cases:

e o = 0.1: dominant stratification with pure rotation ini-
tially shows an identical evolution as pure stratification.
Pancakes are created in a layered flow, after an initial
transient. Due to a factor ten between N and 22 we can
hardly expect phenomena due to rotation to appear be-
fore a time which is tenfold the stratification time scale.
This is confirmed by analyzing statistics, such as vor-
ticity correlation length scales, or the Froude number,
which exhibit large fluctuations after approximately one
system turnover time 27/. The effect of rotation af-
ter this time is local large production of vorticity, found
at small scales. This is confirmed by the evolution of
angular spectra, which show a “rising tail”, after sig-
nificantly long simulation times. Visualizations of the
iso-enstrophy surfaces at the end of the runs show large
flat structures with small scale structures at their sides.

The regular pancake pattern has completely disappeared
to give place to a strongly intermittent picture. More
analysis of these local instabilities is needed. We suspect
that one reason for their appearance of these effects is
the occurence of unit values of a “local” «, which can
be modified by a large coherent vertical vortex. This
hypothesis is underlined by the fact that the vertical an-
gular spectrum of the potential energy approaches quan-
titatively as well as qualitatively the horizontal toroidal
spectrum, a tendency also observed for the case o = 1.

e o = 10: for the toroidal and poloidal part, dominant
rotation shows a similar behaviour as pure rotation for
short times and a different behaviour at long times. As
for the o = 0.1 case, the reason for this is the presence
of two well-separated time scales of rotation and strati-
fication. However, even at short times, the velocity field
is not entirely wave-like, a fraction of the toroidal part
is attributed to the vortex mode. Furthermore, energy
is also stored in a potential mode, although smaller than
the kinetic modes with an approximate ratio of 1/a. The
potential spectra develop a similar anisotropy as the ki-
netic energy spectra with a dominance in the horizontal
direction. This is in contrast to the potential energy
spectra of the case a = 0.1, where the vertical direc-
tion dominates. At large times, the steep spectra due
to rotation become less steep for large wave numbers.
The effects of this phenomenon on temporal Eulerian
statistics are not distinguished. In visualizations, the
difference to pure rotation is a significantly increased in-
termittent behaviour, an observation already made for
the o = 0.1 case.

Although light is starting to be shed on the physical mecha-
nisms driving rotating and stratified turbulence, a number of
questions are still open. Central is the problem of the exact
mechanism of decay of anisotropic turbulence, similar to the
K41 cascade in isotropic turbulence. Answers can be found by
nonlinear modeling or simulations at higher Reynolds num-
bers, not yet achievable by current computer technology. In
the mean time, the parameter space, which is vast in rotating
and stratified turbulence, can be further explored. Attention
needs to be put on the simulation times, as many physicals
phenomena appear only after a number of Brunt-Vaisala fre-
quencies N or rotational frequencies 2, to be distinguished
from numerical artefacts. This is especially true for mixed
cases where one of the two is relatively low.
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