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ABSTRACT

Explicit Algebraic Reynolds Stress Models (EARSM) pro-
vide a better description of the Reynolds stress tensor than the
classical eddy viscosity models. Therefore, they act as a SST
limiter and improve separation prediction. They also allow to
easily capture rotation and curvature effects.

However, the classical derivation of EARSM models relies
upon the notion of turbulence time scale, which is available
in two-equation models but not in models solving only one
transport equation for the eddy viscosity.

A way to extend EARSM modelling to one equation models
is proposed. For the sake of simplicity only two-dimensional
flows are addressed. Applications to simple flows such as
homogeneous shear plus rotation, and boundary layer flows
without pressure gradient or close to separation are given to
validate the model.

INTRODUCTION

Algebraic Reynolds stress models have been proposed by
Rodi (1972,1981). The basic idea is that the turbulent flow
evolves, under weakly changing mean flow conditions, in such
a way that the turbulent kinetic energy level can change dras-
tically but the anisotropy tensor

by = —2- - 2 (1)

hardly changes. The Reynolds stress transport equation can
then be rewritten as
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where P;;, 11;;, €4; and Diffw/‘u/‘) respectively stand for the
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Reynolds stress production, redistribution, viscous destruction

and diffusion terms while P, = %Pu- and ¢ = %au Assum-

ing that the anisotropy also weakly changes spatially, so that

the diffusion term in the Reynolds stress transport equation
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is proportional to the diffusion term in the turbulent kinetic
energy equation, the problem reduces to the constancy of the
anisotropy tensor following fluid particles, which leads to:
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The above equation can be solved iteratively whatever the
turbulence model.

Pope (1975) pointed out that the anisotropy tensor can be
expanded as a sum of ten independent tensors, formed with the
non-dimensionalized mean rate of strain and vorticity tensors
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the coefficients of the expansion being dependent only upon
the invariants of these tensors. For two dimensional flows,
only three tensors have to be considered
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together with two invariants
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For two dimensional flows, Pope showed that the solution of
equation (3) can be obtained as a function of the production to
P
dissipation ratio =*. However, an analytical solution is avail-
€
able only if the redistribution and viscous destruction term
models are linear with respect to the Reynolds stress tensor.
Gatski and Speziale (1993) extended the approach to three-
dimensional flows but still had to impose the production to
dissipation ratio. The explicit solution was independently ar-
rived at by Girimaji (1996) and Wallin and Johansson (2000)
who pointed out that the production to dissipation ratio can
be expressed as
by
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Table 1: Model coefficients for various Reynolds stress models

Model c1 « B ¥ A “w

GL 1.8 -0.6 0 -0.6 0.4 0.4

LRR (0.4) 1.5 -0.764 -0.364 -0.109 0.127 0.345
LRR (5/9) 1.5 -0.778 -0.533 -0.222 0 0.444

SSG 3.4 -0.438 -0.473 -0.238 0.325 0.8

This leads to a third order equation for the production to dis-
sipation ratio for two-dimensional flows, a sixth order equation
for three-dimensional flows.

EXTENSION TO ONE-EQUATION MODELS

The above summarized derivation of the Explicit Algebraic
Reynolds Stress Models (EARSM) requires the knowledge of
the turbulent kinetic energy and its dissipation rate or, at
least, of a turbulence time scale. Such data is available with
any two-equation turbulence model, not with a one equation
model solving an equation for the eddy viscosity. One equation
models are presently very popular and only one attempt to
couple them with a non-linear representation of the Reynolds
stress tensor has been reported by Spalart (2000).

For the sake of simplicity, the proposed strategy will be
presented for two-dimensional flows. As dealing with non-
dimensional quantities such as the anisotropy tensor and the
non-dimensional mean rate of strain and vorticity tensor is
prohibited, the Reynolds stress tensor is first rewritten, fol-
lowing Pope’s analysis as:

2
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From dimensional analysis, the coefficients of the last terms
can be rewritten as A = av:T and B = biy/T where a and b
are constants and 7" a time scale to be determined. a is just
introduced for latter convenience as it could be included in the
definition of the time scale T'.

A linear Reynolds stress model of the following form is used:
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by Gibson (1978), Launder et al. (1975), with the original
value of the constant cz (0.4) and the value % later rec-
ommended by Taulbee (1972), and the linearized version of
model by Speziale et al. (1991), as proposed by Gatski and
Speziale (1993), are given in table 1. The diffusion term has
been omitted in equation (9) as it is dropped out in the stan-
dard EARSM approach, as shown previously.

Introducing the expansion (8) into the above Reynolds
stress equation (9), projecting it on the tensorial basis made

with the four independent tensors d;;, Sij, SixQk; — QixSkj,

and S Sk; — %Slkskl(ﬁj leads to the following set of equa-
tions:
1 Dk P
228 _ k& (10)
k Dt k k
1 Dy k € ( 5 Ab 2)
—_—— = — —c1— — | 2paf? —S“ )T (11
vy Dt XI/t 1]€ H + 3 ( )
DA €
_— = 2 —c1—A 12
Dt pve —e1p (12)
DB 5
— = -4l —c1—B 13
Dt Ay (13)

22X
where x = (gfg), A=14+a+vy p=14+a—7,

52 = 18;;8; and Q2 =
be rearranged as

%Qijﬂij' Equations (12, 13) can

|:DT " T Dy n €T} 9 (14)
a|l—+——+c1— =
Dt Vt Dt lk‘ H
DT T Duy €
b|=— 4+ = ZL 12T = —4x 15
{Dt—i—ut Dt+clk} (15)
so that
A
b= —2a— (16)
I
Equation (12) can be rearranged as
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so that the equation set (10, 11, 17) can be interpreted as

k v
a set of relations between time scales —, —, —t, T and
P, e k

-1
v = (——) , where only the last one is known, from
UVt DT

the transport equation for v;.
Reformulating equation (8) as an equation for the
anisotropy tensor
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shows that the anisotropy remains constant, for constant mean

v
velocity gradients, only if the time scales f and T are con-

stant. The constancy of Yt allows to rewrite equation (10)
as: k
1Dk _1Dv: P ¢ (19)
k Dt vy Dt k k
Equations (19, 11) together with (17) in which the Lh.s. has
been set to zero now form a system of three equations for
three unknown time scales. Setting for convenience a = 2u,
so that b = —4\, and noting that, for two-dimensional flows,
Pj, = 41452, this system can be rewritten as:
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Combining equations (20) and (22) yields:
_ k
Py + (c1 — 1)6
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so that, since Py = 4vpS? > 0 and c¢; > 1, the time scale T l I + (7’1 + ,P2>1/3 + (Pl _ /7)2) 1/3
is always positive (while T, can be negative). Equation (22) T 3ao
can be rewritten as if (P2>0)
—a;
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T T, C1 & (24) 3ag
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v

if (P2 <0)
Eliminating € between equations (20) and (22) yields:

(29)
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In the last case (P2 < 0), the solution is chosen by continuity

1 1
(c1 — I)T— + T= 401%52 >0 and to ensure that 7 satisfies
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At last, subtracting equation (22) from (21) gives:

c1—1

To sum up, the relations (29) give 7 and hence the time
scale T'. The turbulent kinetic energy k can be deduced from

equation (27) so that the Reynolds stress tensor can be com-

(z/\ _ E) k —4( p20?% - /\_232 T+ 1 >0 (27) puted from .equati(?n (8). If. needed, the dissipation rate can
3 2/ v 3 T also be obtained with equation (24).
which is positive as %)\7 g is positive whatever the considered MODEL VALIDATION

Reynolds stress model.
Equations (20-22) can be combined to get a third order

equation for T'. It is more convenient to write it as an equation Homogeneous shear

T
_t . U
for 7= as: For homogeneous shear S = Q = ‘ —
v Ay
3 5 tion (28) reduces to
0 = a3’ 4+ a7t +a17m+ao (28)
where az = 4(c1—1) (3;&23 — /\258) 0 = a4S%73 +abS27m% +a17 + ao
as = 4(3u°QF — N*S3) — 2c153 (41 — 30) where af = 4(c1—1) (3u7 —A%)
ar = 3(c1—-1) ay = 4 (3u2 - )\2) —2¢15% (41 — 33)
ao = 3 al = 3 (61 — 1)

where S3 = T25? and Q2 = T202. % = 3

It can be noticed that ap and a; are always positive and
that, if as is positive, az is positive. Positive as corresponds

so that equa-

to
Q)2 _ A2 40 -3
() 230+ -1
0 1 I 0.9 -
Then, since all coefficients are positive, 7 is negative and hence 0.8 4
T, is negative as T is positive. As — is constant, this means g'; T
UVt -0 ]
that the turbulent kinetic energy is decreasing. The domi- 0.5
nant rotation regime given by the underlying Reynolds stress 0.4
model is retrieved and had to be verified by the associated 03
one-equation model. 02 5
L . . A
Dividing by T}, can lead to some problems. From its defini- 0
tion, T, cannot be null but can tend towards infinity. In this 20 B 01 10 20
case, equation (28) tends towards: _2} E S
0.3
[4 (3202 — A287) — 2¢15% (4N — 38)| T?+3(c1 — 1) T+3 =0 .0_4\X
.05 -

which as a positive root as the coefficient of 72 is negative.
It is more convenient to write the solution of the third order

equation (28) for — as: .
T Figure 1: Homogeneous shear:

dimensional shear rate Sp
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(30)

An analytical solution of this equation can be obtained as

time ratio 7 versus non-

31)



which is shown graphically in figure 1. This figure shows that
there is no solution for small positive values of Sp. This comes

from the underlying hypothesis that % is constant. There-

fore Sop = S (i %>_1 =8 (l %)_1 = Li
v dt k dt —(u') P, —¢
When the mean shear and hence the production to dissipation
ratio decreases, Sp does not tend to zero but towards infinity.
The solution is thus continuous, as shown in figure 2 on which

the time scale ratio is plotted versus So_l. Very small positive

P
values of Sp can only be achieved for large values of k. Ac

€
cording to figures 1 and 2, the time scale ratio is thus blocked
to the highest value corresponding to minimum positive Sp.

0.5

Figure 2: Homogeneous shear: time ratio 7 versus inverse of
the non-dimensional shear rate Sp

Most one equation model reduce, for homogeneous shear,
to:

d ou
ﬁ = Cp1Vt —‘ = QCblslIt (32)

dt oy

so that v o< exp (2¢p1St). On the other hand, the turbulent
kinetic energy equation reduces to

A
*  p—e—p, (1 - i) Pl UL (1 - i) (33)
dt Py, k Py

—(u'v’ P
g and —& tend towards con-
€

stant levels, the turbulent kinetic energy evolves as k o

A
exp (2M (1 — i) St>‘ Therefore, if % is constant,

Assuming that both

k Py
the two power laws are the same, so that
A

oy =~ (1 _ i) (31)

k Py

1,0
- P

Assuming M ~ 0.3 and —& ~ 1.4 — 1.8 yields val-

€
ues of c¢p; between 0.86 and 0.133, close to the value in the
Spalart (1994) model (0.1355).

1 dUt

From equation (32), (T,,)71 = Tl 2¢p1.S so that
vy

1
So = ST, = ——. The above range of c¢j; gives values of

Cb1
So between 3.75 and 5.8. Anisotropy levels predicted with
the SSG model constants are given in table 2 and are in fair
agreement with experiments.

Table 2: Anisotropy levels for sheared flows - SSG model

So b12 b11 b2z b33

3.75 -0.144 0.199 -0.151 -0.047
4.8 -0.145 0.183 -0.140 -0.044
5.8 -0.146 0.169 -0.129 -0.040

Homogeneous shear plus rotation

Results for a combination of strain and rotation are plotted
in figures 3 to 7. It must first be recalled that S and Q are
strain and rotation modulus so that So = ST, and Q¢ = QT,
have the same sign as 7. Therefore, in the figures, regions
where Sp and ¢ have opposite signs are out of concern. The
impossible domain, which corresponds to dominant rotation,
is clearly visible on these figures as part of the domain (¢ >
Sp > 0) without iso-contour lines. The exact equation of the
limiting curve is awfully complex.
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Figure 3: Homogeneous shear plus rotation: iso-time ratio
_ T
(r= T—V) contours

Figure 3 and 4 respectively show the iso-contours of 7 and
—k, confirming that the region of negative values for So and
€
Qo corresponds to negative values for 7, ensuring positive val-
ues for T', and to production to dissipation ratios lower than
unity.

1
Continuity of iso-contours is better represented using 50
0

1 dv
and — as the origin now corresponds to d_tt = 0. Figures 5
0
and 6 presents iso-b11 and iso-bj2 contours.
At last, the production to dissipation ratio has been plotted

c1S0T . R . .
for various rotation to strain ratios.

versus 0 = =S =
€ -7

Although these curves have been obtained with the Speziale

et al. model, they are very similar to the one published by

Wallin and Johansson (2000), using another turbulence model,

as shown in figure 7.

Boundary layer flows
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Figure 4: Homogeneous shear plus rotation: iso production to
dissipation ratio (%) contours
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Figure 5: Homogeneous shear plus rotation: iso-b11 contours

Two boundary layer flows have been used to validate the
model. The boundary layers are first computed using a bound-
ary layer code and the Spalart and Allmaras model. From the
eddy viscosity and mean flow profiles, T}, is computed and then
all the relevant quantities, using the above model. Reynolds
stress profiles are compared to experiments in figure 8 for a
zero pressure gradient boundary layer. The experimental data
are from Smith (1994) experiment.

(u'?) is slightly underpredicted and the near wall behaviour
is of course not at all predicted by the model but the levels of
the Reynolds stresses are fairly well reproduced.

The same comparison is plotted in figure 9 for a boundary
layer close to separation. Experimental data are from Skare
and Krogstad (1994). Experimental data are fairly well re-
produced, except near the wall and near the boundary layer
edge where diffusion effects may be important. Considering
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Figure 6: Homogeneous shear plus rotation: iso-b12 contours
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Figure 7: Homogeneous shear plus rotation: iso production to
dissipation ratio contours

the simplicity of the underlying turbulence model, solving just
one transport equation, such an agreement on all the Reynolds
stress transport is however impressive as even the turbulent
kinetic energy is a result of the present model.

CONCLUSION AND PERSPECTIVES

The feasibility of the extension of Explicit Algebraic
Reynolds Stress Model to turbulence models solving only one
transport equation for the eddy viscosity has been demon-
strated, at least for two-dimensional flows. All the Reynolds
stress tensor, as well as the turbulent kinetic energy and its
dissipation rate can be extracted from the mean velocity gra-
dient, the eddy viscosity and its substantial derivative, with
the help of standard equilibrium assumptions.

The present model has been validated for homogeneous
flows as well as for boundary layer flows and has been shown
to give fair results, in agreement with experimental data and
previous EARSM models.
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Figure 8: Reynolds stress profiles for a zero pressure gradient
boundary layer: comparison of the present model with exper-
iments
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Figure 9: Reynolds stress profiles for a positive pressure gra-
dient boundary layer: comparison of the present model with
experiments

The first extension is obviously to deal with three-
dimensional flows. Streamline curvature and rotation effects
can easily be introduced, following Wallin and Johansson
(2002). Wall damping has to be added to make the model ap-
plicable in all conditions. It has also been shown that there is
some coupling with the underlying one-equation model, which
deserve more attention.

A defect of the model is to assume both kil and T con-

stant. A transport equation for k could be added to get rid
of the first drawback but it is just getting back to an EARSM
model coupled with a rather standard two-equation model.
Another possible track could be to use equations (20, 22) or
preferably their counterpart for three-dimensional flows, to
derive a second equation which makes the model more consis-
tent with history effects captured by the underlying Reynolds
stress model.
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