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ABSTRACT

Two linear eddy-viscosity models, the v2-f and k-w mod-
els, have been combined with an algebraic structure-based
algorithm for the evaluation of the Reynolds stresses. This
closure was originally designed as an integral part of the
algebraic structure-based model (ASBM) to capture the tur-
bulent anisotropy occurring in rotating wall bounded flows.
It is shown that the algebraic structure-based evaluation of
the Reynolds stresses can be used directly with conventional
turbulence models sensitizing them to rotation. Significant
improvement in the prediction of anisotropic turbulent flow
can be achieved without an additional tuning of the closure
coefficients.

The models are evaluated in spanwise rotating channel flow
and in flat plate boundary layers. The sensitivity to the
Reynolds and rotation numbers is investigated. The results
are compared with DNS data.

MOTIVATION AND OBJECTIVES

Linear eddy-viscosity models are known to be inaccurate in
predicting the effect of strong streamline curvature and frame
rotation. There is no shortage of modifications and adjust-
ments proposed in the literature to correct their behavior. For
example in the work by Shih et al. (1995) the k-e¢ model is
modified by introducing coefficients in the e-equation that de-
pend on the shear rate and frame rotation. A more consistent
redesigning of the e-equation for flows with rotational effects
has been proposed by Haire and Reynolds (2003). Another
recent attempt by Durbin and Pettersson Reif (2001) con-
sists in the modification of the eddy-viscosity coefficient (again
by introducing dependency on the shear rate and frame rota-
tion). In the latter case the justification for the choice of the
selected functional dependency comes from the study of so-
lutions of second-moment models in the case of homogeneous
rotating shear. Although these modifications are shown to
provide encouraging predictions for simple flows with rotation
(namely channel flows), their accuracy for more complex sit-
uations remains unclear. Differential Reynolds stress models,
on the other hand, possess the obvious advantage that the
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turbulence production terms and the stress anisotropy are au-
tomatically accounted for. Unfortunately, the difficulties in
modeling the stress redistribution terms and their inherent
numerical stiffness make them not amenable to mainstream
use in engineering calculations.

Algebraic Reynolds stress models have received a substan-
tial amount of attention given the potential benefit of intro-
ducing stress anisotropy in the controlled environment of an
eddy-viscosity closure. Several models have been devised with
various degree of success (Gatski & Speziale 1993; Wallin &
Johansson 2002). The basic idea behind these models is to
express the Reynolds stress tensor as a function of one or
more (up to ten) different tensors. This is not different from
what is used to derive the so-called non-linear eddy-viscosity
models where additional (high-order) terms are added to the
Boussinesq relationship between mean strain and Reynolds
stresses. Reynolds and coworkers (e.g. Reynolds 1994, Kassi-
nos & Reynolds 1994, Kassinos et al. 1993) have repeatedly
argued that for adequate modeling and description of rotat-
ing turbulence, information about the turbulence structure is
crucial. The Reynolds stresses only characterize the compo-
nentality of turbulence, i.e., which velocity components are
more energetic. The turbulent field has much more informa-
tion than that contained in the Reynolds stresses, which is
important in presence of rotation, and which is described by
the turbulence structure. For instance, the dimensionality of
the flow is important. This carries information about which
directions are favored by the more energetic turbulent eddies:
if the turbulent eddies are preferentially aligned with a given
direction, then the dimensionality is smaller along that di-
rection. In the Algebraic Structure-Based Model (ASBM),
hypothetical turbulent eddies are used to bring awareness of
turbulence structure into the turbulence model. Averaging
over an ensemble of eddies produces a set of one-point statis-
tics, representative of the eddy field, and a set of equations of
state relating the Reynolds stresses to these statistics.

The structure-based approach to build the Reynolds stress
closure has lead in Langer and Reynolds (2003) to the devel-
opment of an ASBM in conjunction with a novel two-equation
model based on the transport equation for turbulent kinetic
energy, k, and large scale vorticity w?. The model has been



calibrated for channel flow simulations and the results have
shown excellent agreement with available DNS data.

The primary objective of this work was to implement
the ASBM in a three-dimensional Reynolds-Averaged Navier-
Stokes (RANS) solver to perform simulations of complex flows.
In this report, we describe the combination of the ASBM
Reynolds stress evaluation with conventional turbulence mod-
els, namely the k-w and v%-f models. Results are presented
for channel flow with and without spanwise rotation. To
achieve the primary objective some modifications to the orig-
inal ASBM formulation have been developed to ease its nu-
merical implementation. In particular, a scalar diffusivity has
been introduced to the transport equations of the turbulent
scalars and a generalization of the blocking length scale def-
inition has been introduced. Additionally, the combination
of the ASBM with the v2-f scale equations was explored in
boundary layer flows, using a parabolic flow solver.

THE STRUCTURE-BASED ALGEBRAIC STRESS MODEL

The eddy-axis concept Kassinos and Reynolds (1994) is
used to relate the Reynolds stress and the structure tensors
to parameters of a hypothetical turbulent eddy field. Each
eddy represents a two-dimensional turbulence field, and is
characterized by an eddy-axis vector, a;. The turbulent mo-
tion associated with this eddy is decomposed in a component
along the eddy axis, the jetal component, and a component
perpendicular to the eddy axis, the vortical component. This
motion can be further allowed to be flattened in a direction
normal to the eddy axis (a round eddy being characterized by
a random distribution of kinetic energy around its axis). Av-
eraging over an ensemble of turbulent eddies gives statistical
quantities representative of the eddy field, along with consti-
tutive equations relating the normalized Reynolds stresses and
turbulence structure to the statistics of the eddy ensemble,
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The eddy-axis tensor, a¢j=<V2aiaj>, is the energy-weighted
average direction cosine tensor of the eddy axes. The eddy-
axis tensor is determined by the kinematics of the mean de-
formation. Eddies tend to become aligned with the direction
of positive strain rate, and they are rotated kinematically by
mean or frame rotation.

Motion around the eddy is called vortical, and motion along
the axis is called jetal. The eddy jetting parameter ¢ is the
fraction of the eddy energy in the jetal mode, and (1 — ¢) is
the fraction in the vortical mode. Under irrotational mean
deformation, eddies remain purely vortical (¢ = 0). Shear
produces jetal eddies, and in the limit of infinite rapid distor-
tion ¢ — 1 for shear in a non-rotating frame. For shear in a
rotating frame, ¢ ranges from 1 for zero frame rotation to 0 for
frame rotation that exactly cancels the mean rotation in the
frame, for which the mean deformation in an inertial frame is
irrotational.

The eddy helix vector -, arises from the correlation be-
tween the vortical and jetal components. Hence v, = 0 for

purely vortical turbulence (¢ = 0) or for purely jetal turbu-
lence (¢ = 1). Typically 7y is aligned with the total rotation
vector Q;{ The eddy-helix vector is the key factor in setting
the shear stress in turbulent fields.

Flattening is used to describe the degree of asymmetry in
the turbulent kinetic energy distribution around an eddy. A
round eddy has no preferential distribution. If the motion is
not axisymmetric around the eddy axis, the eddy is called flat-
tened. The eddy-flattening tensor, b;;, is the energy-weighted
average direction cosine tensor of the flattening vector. The
intensity of the flattening is given by the flattening parame-
ter, x. Under rapid irrotational deformation in a fixed frame
eddies remain axisymmetric. Rotation tends to flatten the
eddies in planes perpendicular to the rotation direction.

Following Reynolds et al.  (2000), the eddy-axis tensor,
a;j, is computed on the analysis frame, where the turbulence
might be at equilibrium or very close to it. The eddy-axis
tensor is computed with no reference to the frame rotation,
as it is only kinematically rotated by it (Kassinos & Reynolds
1994, Haire & Reynolds 2003). The evaluation is divided in
two parts. Initially a strained eddy-axis tensor, afj, is evalu-
ated based on the irrotational part of the mean deformation.
Next a rotation operation is applied, sensitizing the eddy-axis
tensor to mean rotation. This procedure produces eddy-axis
tensor states that mimic the limiting states produced under
RDT for different combinations of mean strain with on-plane
mean rotation, while guaranteeing realizability of the eddy-
axis tensor.

The strained afj is given by
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where S} = S;j — Skrdi;/3 is the traceless strain-rate tensor
with S = (Qu; /0 + Ouy/0x;)/2, T is a time scale (Eq. 19),
and ap = 1.6 is a “slow” constant. This gives realizable states
for the eddy-axis tensor under irrotational deformations.

The final expression for the homogeneous eddy-axis tensor,
a;j (for near-wall regions see Equation 11), is obtained by

1
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applying a rotation transformation to the strained eddy-axis

S
tensor, g
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where le,p = Qp¢Qpq. The orthonormality conditions

HikHjy, = 6;5 and Hy;Hy; = ;5 require

h1 =\/2h2—h§/2. (4)

ho is determined with reference to RDT for combined homo-
geneous plane strain and rotation (see Reynolds et al. 2000,
Haire & Reynolds 2003),
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where r = (aquqTS:p)/(S;nS,’;mamk).
The flattening tensor b;; is modeled in terms of the mean
rotation rate vector, €2;, and the frame rotation rate vector,
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The helix vector 7 is taken as aligned with the total rota-
tion vector,

of _
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Modeling ¢, 8 (see Eq. 7), and x is a crucial part in the
construction of the model. The equations for these scalars
are found by analyzing target turbulent states corresponding
to a mean deformation. Throughout the model development
there is a strong effort to make it consistent with RDT solu-
tions, aiming to improve model dependability and realizability
for a wide range of mean deformations, as well as to ob-
tain guidance in the functional shape chosen for the structure
parameters. Tentative functional forms for the structure pa-
rameters are thus chosen with reference to RDT. A set of
parameter values is chosen to mimic the isotropic turbulent
state (the eddy structure is expected to consist of axisym-
metric (x = 0), vortical (¢ = 0) eddies). Finally interpolation
functions (along with model constants) are chosen to bridge
these limiting states (isotropy and RDT). They are selected
specially to match a canonical state of sheared turbulence,
observed in the log region of a boundary layer.

The structure scalars are parameterized in terms of 7y,
Ny, and a2, representatives of the ratio of mean rotation to
mean strain, frame rotation to mean strain, and a measure
of anisotropy respectively. These in turn are defined in terms
of an7'2, Q%T2, and $272; measures of the strength of the
mean rotation, total rotation, and mean strain respectively. 7
represents a time scale of the turbulence (Eq. 19).
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As ano-slip wall is approached, the velocity is driven to zero
through the action of viscous forces. Furthermore, the velocity
vector is reoriented into planes parallel to the wall through an
inviscid mechanism (wall blocking) which acts over distances
far larger than the viscous length scale. Thus the velocity
component normal to the wall is driven to zero faster than
the tangential components. In the structure-based model it
is postulated that the eddy orientation shall also be parallel
to the wall. A wall-blocking procedure is then introduced
to reorient the eddies into planes parallel to the wall. The
structure parameters are also sensitized to wall blocking, such
that the modeled Reynolds stresses are consistent with the
expected near wall asymptotic behavior.
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Following Reynolds et al. (2000), the homogeneous eddy-
axis tensor, a,?j, is computed based on the homogeneous alge-
braic procedure, Equations 2 and 3 (note that the superscript
“h” has been added in the current section). It is then partially
projected onto planes parallel to the wall,

1
aij = HixHjaly, Hy, = D_(5z‘k — Bi), (11)
a
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where H;j, is the partial-projection operator, and D2 is such
that the trace of a;; remains unity. The blockage tensor B;;
gives the strength and the direction of the projection. If the
wall-normal direction is z2, then Bag is the sole non-zero com-
ponent, and varies between 0 (no blocking) far enough from
the wall, to 1 (full blocking) at the wall. B;; is computed by
By = %@ if DD > 0. (12)
If all gradients of ® vanish, the denominator in (12) has been
clipped setting effectively B;; to zero.
The blocking parameter, ®, is computed by an elliptic re-
laxation equation

2 3/2 3
Lzai—;;lc:@, L = C Max kT,CM“/”? (13)

with ®=1 at solid boundaries, and ®,,=0®/9z,=0 at open
boundaries, where z,, is the direction normal to the boundary.
The definition of L is inspired by Durbin and Pettersson Reif
(2001). Here C, = 50, and
1.0 ST
8272 415,
with §2 = 28;;5;;. This form is chosen so as to limit the
growth of L in rotating flows, when & decreases substantially.

Cr = (14)

An overgrown L would enforce too much blocking on the tur-
bulence structure over too much of the flow. An alternative
solution would follow Pettersson and Andersson (1997), and
add to € the viscous dissipation. This would in fact again limit
the decay of € near a stable wall in rotating flows.

To recover proper asymptotic behavior of the Reynolds
stresses, 12 < O(z2) and ra2 O(:L’%), as the wall at zo =0
is approached, the homogeneous jetal, ¢", and helix, v", pa-
rameters are modified using

d=1+(¢" —1)(1 - B)?, (15)
=" (1 - Byy). (16)

A consequence of this approach is that realizability is au-
tomatically satisfied for r;;.

ROTATING CHANNEL FLOW AND FLAT PLATE BOUND-
ARY LAYER COMPUTED WITH CONVENTIONAL TURBU-
LENCE MODELS COMBINED WITH ASBM
The steady RANS equations governing the motion of an
incompressible viscous fluid in a Cartesian rotating frame of
reference are given by conservation of mass and momentum as
in Greenspan (1968):
Ou;
Ox;

=0, (17)
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where u; is the mean velocity measured in the coordinate sys-
tem rotating with constant angular velocity Q;, and zj, P, p,
and v represent respectively the position vector, reduced pres-
sure, density and kinematic viscosity. The reduced pressure
incorporates the centripetal acceleration.

For fully-developed channel flow in a spanwise rotating
frame the mean velocity is given by u; = u(y) where y is the
wall normal direction. The frame rotation rate vector is given
by ij = Q,’; with z being the spanwise direction. The wall-
normal mean velocity component vanishes by continuity for a
fully-developed channel flow with zero velocity at the walls.
This simplifies the momentum equation; only the streamwise
direction component, x, needs to be solved and the term con-
taining the angular velocity Q£ is zero.

The Reynolds stress in equation (18) is obtained through
the algebraic equation (1). The complete ASBM model, de-
scribed in Langer and Reynolds (2003), includes two scalar
transport equations for the turbulent kinetic energy k and the
large-scale turbulent enstrophy w?. The purpose of these two
quantities is to provide the field distribution of k and of the
turbulence time scale 7. The latter has the following relation

to k and e: 5 2
(o) o

In this work, field distributions of k and 7 have been obtained
from the k-w model by Wilcox (1993) and v2-f model by
Lien and Durbin (1996). In addition, low-Re modifications
given in Wilcox (1993) for the k-w model have been con-
sidered. For the k-w model, the time scale is computed as
72 = 1/(8*w)? + 4.0v/(kwB*) while equation (19) is used di-
rectly for v2-f which includes transport equations for k and
€.

The time scale is used to scale the rotation 2;; and strain
Sjj rate tensors that are obtained from the mean flow velocity
distribution. The blockage tensor B;; is obtained as described
above from an elliptic equation. The tensors 7.5;;, 7€2;; and
B;j as well as k and 7 and the frame rotation vector rof
provide the necessary information for the ASBM Reynolds
stresses T;; = —ulu’.

Following equz;tién (18), the Reynolds stress enters only the
diffusion term in the momentum equation. In an incompress-
ible RANS flow solver based on a standard SIMPLE algorithm
the diffusion term is usually treated implicitly for stability.
This is straightforward when the Reynolds stress is computed
over the Boussinesq approximation and an eddy-viscosity is
used. With the ASBM procedure the Reynolds stress is com-
puted explicitly and an explicit correction to the momentum
equation is used. For the implementation of the ASBM pro-
cedure in the IBRANS code by Kalitzin and Iaccarino (2003)
the last two terms in equation (18) have been re-written as:

o LOurtt g dur T
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where n is the current iteration. The terms with the eddy-
viscosity are equal to each other when the solution is con-
verged. The eddy-viscosity used is as defined by the k-w or
v2-f model.

The Reynolds stress enters only the production term P, =
7;70u; /0x; in the transport equations of the turbulence mod-
els. The eddy-viscosity is retained in the diffusion terms and
no additional modifications of the turbulence equations have
been performed in respect to the frame rotation.

Haire and Reynolds (2003) also looked at using alternative
scale equations along with an earlier version of the ASBM, for
free shear flows. A few distinctions are present in the current
investigation. Briefly, (i) the turbulent transport term in the
scale equations has a tensorial form in Haire and Reynolds
(2003), whilst here a scalar diffusion model is investigated, for
its simplicity makes it possible to use the ASBM in available
CFD packages. (ii) Haire and Reynolds concentrated on free
shear flows. The analysis here regards wall-bounded flows, and
(iii) the algebraic equations that constitute the current ASBM
formulation are different from the earlier version explored by
them.

The channel flow computations have been performed as
streamwise periodic flow with one cell in flow direction. The
pressure and velocity components at the outflow have been
copied to the inflow and a source term has been added to the
momentum equation to account for the pressure loss.

Finally, a parabolic flow solver was introduced to compute
two flat plate boundary layers: Spalart (1988) zero pressure
gradient (ZPG) at Rey = 1410, and Spalart and Watmuff
(1993) adverse pressure gradient (APG) boundary layer.

NUMERICAL RESULTS

Channel flow simulations in orthogonal mode rotation have
been performed for a variety of Reynolds and rotation num-
bers. The first objective of these simulations is to identify the
steps necessary to combine the ASB Reynolds stress evaluation
and a conventional eddy-viscosity model. As shown earlier the
RANS equations are closed when the eddy-viscosity is intro-
duced; therefore, the first, preliminary, step is to use the ASB
procedure as a post-processing tool to evaluate the Reynolds
stresses. Successive steps consist of introducing different levels
of coupling between ASB and the overall solution procedure;
first, only the mean equations are modified by discarding the
eddy-viscosity and evaluating the divergence of the Reynolds
stresses directly. Finally, a fully coupled solution is obtained
when the Reynolds stresses are also used to close terms in
the equations for turbulent quantities. The results obtained
are summarized in Fig. 1 for the k-w and the v2-f models
in a channel flow without rotation. Not surprisingly, the best
match with the experiments is obtained when the full coupling
is employed; it is also very interesting to note that the use of
ASB as a post-processing is already sufficient to obtain the cor-
rect level of anisotropy as opposed to the standard application
of the eddy-viscosity models. This situation is clearly a pecu-
liarity of this specific test case because the stress anisotropy
does not affect the mean flow transport. Another important
observation is that the inclusion of the ASB stress evaluation
in the turbulent kinetic energy production is necessary to ob-
tain accurate results. It must be noted that in the original
ASBM approach by Langer and Reynolds (2003), a tensorial
turbulent diffusivity is also included whereas in the present
implementation a scalar coefficient is used.

Fig. 2 shows the effect of the Reynolds number for flow
without rotation. In this case the high- and low-Re ASB k-w
as well as the ASB v2-f models are reported. Here we added
the ASB prefix to the models to indicate that the Reynolds
stresses are evaluated with the ASB procedure. The latter two
produce results that are satisfactory for both Reynolds num-
bers whereas the high-Re ASB k-w under-predicts the peak of
the urms in particular for Re = 180.

The application of the fully-coupled approach for the flow
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Figure 1: Channel flow at Re = 395 computed with low-Re
k-w (upper half) and v2-f (lower half) models as: :
Reynolds stress computed from Boussinesq approximation for
linear model, — —: ASB Reynolds stress from linear model,
: ASB Reynolds stress used only in the mean flow,
—--—: ASB Reynolds stress used in the mean flow and in the

production term of models, o : DNS by Moser et al. (1999).
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Figure 2: Channel flow at Re = 395 (upper half) and Re = 180

(lower half). : ASB v2-f, — —: ASB low-Re k-w,
————— : ASB high- Re k-w, o: DNS by Moser et al. (1999).
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Figure 3: Rotating channel flow at Re = 180 and Ro = 0.22.
: ASB v%-f, — — : ASB low-Re k-w, ————- : ASB
high-Re k-w, —--—: ASBM, o: DNS by Alvelius (1999).
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Figure 4: Rotating channel flow at Re = 180 and Ro = 0.77.

: ASB v%-f, — — : ASB low-Re k-w, ———— : : ASB
high-Re k-w, —--—: ASBM, o: DNS by Alvelius (1999).
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Figure 5: Velocity profiles for channel flow at Re = 180 and
Ro =0.,0.055,0.11,0.22,0.43 and 0.77; ———— : v2-f,
ASB v2-f, 0: DNS by Alvelius (1999).
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Figure 6: Turbulent kinetic energy for channel flow at Re =
180 and Ro = 0.,0.055,0.11, 0.22,0.43 and 0.77; ———— : vz—f,
: ASB v2-f, o: DNS by Alvelius (1999).
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Figure 7: ZPG boundary layer at Rey = 1410; ———— : ASB
v2-f, : DNS by Spalart (1988).
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Figure 8: APG boundary layer at x = 0.80; ———— : ASB
v2-f, : DNS by Spalart and Watmuff (1993).

in a channel with rotation is reported in Fig. 3 and Fig. 4 for
a channel flow at two different rotation numbers. The rota-
tion number is defined here as Ro = Qf2h /u; where Q7 is the
magnitude of the frame rotation rate, h is the half-height of
the channel and wu, is the bulk velocity in the channel. In these
plots DNS data and the original ASBM are compared to ASB
k-w and ASB v2-f predictions. The asymmetry in the mean
velocity profile is properly captured even for the high rotation
case. In addition, the Reynolds stress anisotropy is remark-
ably close to the DNS results at the turbulence-enhanced side
of the channel. Notice that at the pressure-side of the channel
(lower side in the Fig. 3 and Fig. 4) turbulence intensity is
reduced and, eventually, the turbulent stresses are negligible
with respect to the viscous stresses. The correspondence be-
tween mean flow predictions and correct level of anisotropy is
very encouraging. The difference between the full ASBM ap-
proach and the current combined approach is also very small
especially when v2-f is used.

Further simulations have been performed at a variety of ro-
tation numbers in the [0-0.77] interval. The results obtained
using the v2-f and the ASB v?-f are presented. The mean
velocity profile and the turbulent kinetic energy are reported
in Fig. 5 and Fig. 6, respectively. As expected from the re-
sults previously shown, the current model and the DNS agree
remarkably well.

Fig. 7 and Fig. 8 show comparisons of the ASB v2-f



with DNS of a ZPG boundary layer by Spalart (1988) and
with DNS of an APG boundary layer by Spalart and Watmuff
(1993), respectively. Comparisons are made using wall units,
and in the APG case, only one station is reported, 2/3 of the
way through what they call the “comparison region”, £=0.80.
The anisotropies of the turbulence intensities predicted with
the ASB v2-f are in very good agreement with the DNS.

CONCLUSIONS AND FUTURE PLANS

The algebraic structure-based model has been used in this
work in combination with conventional linear eddy-viscosity
models to evaluate the Reynolds stress in the RANS equations.
This approach has proven to be very accurate in predicting
the mean flow and the stress anisotropy in rotating channel
flow as opposed to the baseline eddy-viscosity predictions that
are typically insensitive to frame rotation. Several modifica-
tions, that have not been reported in this paper, have been
introduced to the ASBM model in order to facilitate its appli-
cation to more general flow problems. In particular, a scalar
turbulent diffusion coefficient is introduced in lieu of the orig-
inal tensorial diffusivity and a modified formulation for the
blockage effect that includes a generalization of the definition
of the relevant length scale has been introduced.

The current combination of the ASB Reynolds stress eval-
uation with the v2-f and k-w models is carried out in a full
three-dimensional flow solver. However, only channel flow sim-
ulations were performed. Preliminary computations of flows
in square-ducts appeared encouraging. Results for ZPG and
APG boundary layer flows computed with a separate parabolic
solver are also encouraging.
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