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ABSTRACT

In the framework of magnetohydrodynamics (MHD), differ-
ence between the kinetic and magnetic energies is investigated.
Deviation from the equipartition is measured by the turbulent
MHD residual energy (Kg). With the aid of the TSDIA or
a statistical analytical theory for inhomogeneous turbulence,
expressions for the correlation tensors appearing in the Ky
equation are derived. Using the results, we propose a model
equation for Ky evolution. Through the examination of the
KRr-equation structure, it is shown that the evolution of the
scaled K is related to the cross helicity (velocity/magnetic-
field correlation) of turbulence.

INTRODUCTION

Magnetohydrodynamics (MHD) provides a powerful tool
for analyzing fluid-like behaviors of magnetized plasmas. In
homogeneous isotropic MHD turbulence, an equipartition be-
tween the kinetic and magnetic fluctuation energies should be
realized in the presence of a uniform magnetic field (Kraich-
nan, 1965). Conversely, it is not the case in inhomogeneous
turbulence with a mean flow shear. The deviation from the
equipartition plays an important role in various MHD shear
flow phenomena.

In the turbulent dynamo or generation mechanism of large-
scale magnetic fields in turbulence, one of the key mechanisms
is called the helicity or a effect. It is known that the o ef-
fect does not solely depend on the kinetic helicity but on the
residual helicity (difference between the kinetic and current
helicities) (Pouquet et al., 1976). Since the magnitude of the
residual helicity is linked with the counterpart of the residual
energy (difference between the kinetic and magnetic energies),
a proper estimate of the residual energy is indispensable for
dynamo studies (Fig. 1).

Another noticeable example is the solar-wind turbulence,
where deviation from equipartition between the kinetic and
magnetic energies is ubiquitously observed. One approach to
treat this deviation is to consider the evolution equations for
both the Reynolds and the Maxwell stresses with all their intri-
cacy. Another approach, after the eddy-viscosity-type model-
ing of MHD turbulence, is to define a statistical quantity called
the turbulent MHD residual energy by Kr = (u’? — b’?)/2
(u’: velocity fluctuation, b’: magnetic-field fluctuation, (-):
ensemble average) and consider the evolution equation for
Ky as well as the counterpart for the turbulent MHD en-
ergy K(= (u'? +b'?)/2). In this work, we adopt the latter
approach and discuss the deviation from equipartition from
the viewpoint of the Kg-equation modeling.
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Figure 1: Residual energy and turbulent dynamo: A large
difference between the kinetic and magnetic energies is related
to a large amplitude of the residual helicity, leading to an
effective a dynamo. w(= V x u’): vorticity fluctuation, j'(=
V x b’): current fluctuation.

STATISTICAL ANALYSIS AND ITS RESULTS

Fundamental equations
An incompressible magnetohydrodynamic plasma in a sys-
tem rotating with the angular velocity Qg obeys

ou

g +(u-V)u—(b-V)b=

—Vpum — 29 X u+vV2u (1)

Z4fu-V)b—(b-V)u=2v’b (2

with the solenoidal conditions for the velocity u and the mag-
netic field b

V-u=V:-b=0 (3)

Here, py is the MHD pressure, v is the kinematic viscosity,
and A is the magnetic diffusivity. We introduce the Elssasser
variables:

¢=u+b, y=u-b @)

and rewrite Egs. (1)-(3) with neglecting the difference between
v and A, we have

%Hw-vm:—VpM—ﬂFx(¢+¢)+%v2¢ ®)
8_’(& v+ A

+(¢‘V)w:—VpM—QFx(¢+¢)+7v2¢ (6)

(7

Equations (5)-(7) show that the permutation of ¢ with ¢ does
not change the system of equations. We fully utilize this prop-
erty in the following calculations.

at
V.¢=V-¢4=0



Mean and fluctuation
We divide the field quantities f such as u, b, etc. into the
mean F and the fluctuation f’ around it as

f=F+f, F=(f) (8)
where
f=(w,b,j,pm, 0, 9) 9)
F=(U,Q,B,J, P\, ®, V) (10)
= b py, oY) (11)
where w(= V X u) is the vorticity and j(= V X b) is the

electric-current density. Substitution of Eq. (8) into Egs. (1)-
(3) or Egs. (5)-(7) gives us the equations for the mean field
and the counterparts for the fluctuations.

Equations for the turbulent residual energy
The turbulent MHD residual energy is defined by
Kg = (u? —b/%)/2 (12)
From Egs. (1) and (2) and the Reynolds decomposition
[Eq. (8)], the evolution equation of Kg is exactly given as

DKR F)
=(—+4+U-V ) K
Dt (8t+ ) "
aue B
= —R“wa +W%ba— -T' B

ou'® du'® ob'® 9b'e ad
_ -z - A - la ./
V< Oxb Ozxb >+ <8mb Oxb > B <u Pm >
_% <u/b% (u/aZ _ b/a2)>
x

5 () =23 (0

32
+8mb8xb (V§
_pa 8“’“) >

ob
Oxb
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(13)

where U is the mean velocity and B is the mean magnetic
field. Here, R and W denote the total MHD self- and
cross-correlation tensors, respectively, and I' is the torsional
cross vector. They are defined as

F = (w4 b0 (14)
Wil = (W' bP 4 u/Pp') (15)
8u/a ab/a
/ /
<b“8a+u“a$a> (16)

Statistical Analysis

With the aid of the two-scale direct-interaction approxi-
mation (TSDIA) (Yoshizawa, 1998), a statistical analytical
theory for inhomogeneous turbulence, we explore the expres-
sions for these correlation functions [Egs. (14)-(16)]. The
formal procedure is summarized as follows.

Introduction of two scales. Using a scale parameter J§, we
introduce the slow and rapid variables:

E=x, X=6x; 7=t T =20t (17)
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The slow variable (X,T) provide long spatial and tempo-
ral scales since their changes are not negligible only when
x and ¢ are large. On the other hand, the rapid variables
(&, 7) is appropriate for describing the fine spatio-temporal
motions. With these two-scale variables, the spatial and tem-
poral derivatives are expressed as

0 e} 0
V=V 0oVx, —=—+06— 18
¢V 5 =5 Toar (18)
and the field quantities f are divided into F' and f’ as
f=FXT)+ (6, X;7,T) (19)

Fourier representations. We perform the Fourier transform
with respect to the rapid variable £ and express the governing
equations in the wave space. For instance, the equation for ¢’
is expressed as

29/° ks

+vk?¢'%(k; ) — ik%piy (k; T)

—ik® // 5(k — p — @)dpday’® (p; 7)¢"* (q; 7)

_ k B ¢/O‘(k ) _saaan (¢'b(k ) +¢/b( ))

+6 (—w’“(k; 7) gij - %;;T)
L Be 8(15’;‘ )((l; T) ‘91’:1;1)(;; 7)
_% // s(k—p— q)dpdw’“(p;f)ab’“(q;ﬂ) (20)
k- ¢'g(ki7) = 0 @)
where

/ , k 99" (k;t)
¢(k;7)=¢s(k;7)+5<—lk—2TIa) (22)

and 6(k —q —r) in Eq. (20) denotes the delta function which
vanishes unless the wave-vector relation k = q+r is satisfied.

Scale-parameter expansion. We expand the field quantities
¥ = (¢’,¢’) in the scale parameter J:

9 = 9) + 59 + 6295 4 -+ (23)
where g is the field without the mean field. We further ex-
pand this in the external-field parameter such as the mean
magnetic field B and the angular velocity Qp:

W =95+ + 9+ -+ 95+ (24)
Here, 1933 is the basic field corresponding to the homogeneous

isotropic turbulence. For instance, the equation for ¢;3
ten as

is writ-

09 (k; 7)
ar

// 8(k — p — q)dpdayi® (p; )" (a;7) =0 (25)

vk2¢p ™ — ik D (k) x



where D (= §*0 — k*kP /k?) is the projection operator in
the wave space. Note that this equation is the same as the
counterpart for the homogeneous isotropic turbulence except
the implicit dependence on the slow variable X and T'.

Calculation using the Green’s functions. We define the
Green’s functions for ¢, ¢(,, etc. For example, the one for
o8B, G;aﬁ(k;r, 7'), is defined by

BG;aﬁ(k; 7,7
_— +
or

/ / 5(k — p — q)dpdayi® (p; )G P (q; 7, 7') = 0 (26)

vk* Gl 2P (k;7,7") — ik D (k) x

Using these Green’s functions, we formally solve 9(; and .

Statistical properties for the basic fields. Since the basic
fields are homogeneous and isotropic, we assume the statistical
properties for them in the form:

(950 xg (K5 7))
Sk + k)

= D*?(k)Quy (k; 7, ')
ike
+§ k—QEaBaHgX(k; 7)) (27)

(G (7, 7)) = 6°P Gy (i, ) (28)
where ¥ and x denote ¢ and/or ¥. For later convenience,

we introduce the symmetric and antisymmetric parts of the
Green’s functions as

Gs(k;7,7") = (G¢ (k;7,7") + Gy (k; T, T')) (29)

N = N =

Galk;T,7) = (G¢ (k;7,7") — Gy (ks T, T')) (30)

Calculation of the correlation functions. Following the above
procedure, we calculate the correlation functions Egs. (14)-
(16) with

(620') = (#5°05°) + (500 ") + (601"9p") + -
+(0501%) + (#17087) +- (3D)

{
(W) = (Upvs”) + (V56 ”) + (Vo “v”) + -
+ (VB e1%) + (Wil + - (32)

(-2) ()
Ozt Ozt

+ <¢’Ba%> + <¢61°‘a§%,ﬁ > +

+ <¢§3" 8;;3; > + <¢’1°‘ 8:;“;5> +o (33)
(2 (oo

() (e

" <w;3°* 200 > " <¢1°‘ i > T ()
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Results from TSDIA
With the abbreviation notations:

I, {A} = / dkk®" A(k; T, T) (35)

I,{A,B} = /dkkzn/ drA(k;T,m1)B(k;T,m71)  (36)
—oo
the results of the TSDIA analysis are expressed as
1
af _ [ r1a, 18 rap/B\ _ L [ re 1B 1o, 18
R = (o 4 0°07) = = (99 +4/*u'")
2
= 3010 {Quu + Quv}
7 o

_EIO {GS> (Quu - be)} S

7
_EIO {GS> (Qbu - Qub)} Maﬁ

F208AT +200A% +65°7205 - AR (37)
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af _ 1oyt B 1o, 18\ ra 1B e, 18
Wo _<u°‘b + % >—§<¢a¢ 'Y >
2
= §5°‘ﬁlo {Qub + Quu}
7 B
_BIO {G87 (Qbu - Qub)} S
7 B
_BIO {G& (Quu - be)} M
F2ORAY, + 200G, +66%7208 - A (38)
8ula 8b/a 1 8,¢la 8¢la
Fa: b/a _0a >:_</a __aa >
< ox™ v x> 2 ¢ or™ ¥ or™
4
= 511 {Gs, (Quu — Qup)} B
1
+§IO {G& (Huu + be)} (V X B)a
1
—510 {Gs, (Hup + Hpy)} (2 4 2Qp)“ (39)
where
1
AR = I (I-1{Gs,VHuyu} +1-1{GaA,VHu}) (40)
1
Aw = — (I-1{Gs, VHyp} + I-1{GaA, VHuu})  (41)

15
Here, S and M are the velocity and magnetic strain rates
defined by

aBP?  aB~
Oxe oxB

Note that, in Eqs. (37)-(41), Quu, Huu, etc. are the spectral
functions that are related to the basic fields as

U™

MF = (42)

<% (u’32 + b,Bz)> = /dk (Quu(kﬁ T, T) + be(’ﬁ T, T))

= %/dk (Q¢¢(k;'r,'r) + Quy (k5 7, ’T)) (43)

(u's b'g)= / dkQus (ki 7, 7)

= %/dk (Q¢¢(k; T,7) — Quu(k; T, T)) (44)



<—u’B -w'g+b'p ‘le> = /dk(—Huu(k; 7,7) + Hpp(k; 7, 7))

(45)

1
-5 /dk (HM,(k; T,7) + Hyo(k; T, 7'))

(u'B-i's) :/dkHub(k§T7T)

= i/dk (H¢¢.(k;7',7') —H¢w(k;77r)) (46)

MODELING OF THE RESIDUAL-ENERGY EQUATION

Residual-Energy Model Equation

Using the analytical results for R%B [Eq. (37)], Wr?ﬁ
[Eq. (38)], and I" [Eq. (39)], we construct a model equation
for Kg. Equation (13) can be modeled as

DKg p OUC » 9B?
— _Ro webt—_ _17.B-— V-Tr (47
Dt Taa:b+ T ogb Rt m (47)
where
‘ 2 K
Y = SK6°% — R —KrS°’ +HRT.  (48)
‘ 2 K
WoP = Zwees — CR?KRM"‘B +H.R.T. (49)
L'=r1B+7V xB+7r3(Q+2QF) (50)
with
€ € w
r1=Chn 2 KR, r2 = CrQEHT7 r3 = _CrS?HT (51)

[2(= V x U): mean vorticity]. Here, eg and V - TR are
the dissipation and transport rates of KR, respectively. With
the aid of the algebraic and gradient-diffusion approximations,
they are modeled as

€
eR = CeREKR (52)
Tr = 2K VKR (53)
OKR

(Cer, okr: model constants). In Egs. (48)-(53), ¢ is the
dissipation rate of K, W is the turbulent cross helicity, and
Hr is the total turbulent MHD helicity. They are defined by

au/a au/a ab/a ab/a
= N N (2 54
‘ V<8:Eb 6:L"b>+ <8mb 8:1:”> (54)
W= (u-b’) (55)
Hr = <u' . w'> + <b' -j'> (56)

‘We have positive model constants Cr, C.r, okr, and Crp
(n = 1-3). At present, we may estimate some of them as

Cr=0(10""), Cer =0(107") ~O(1), oxkp =1 (57)
We should estimate and optimize these values including Cip,

through various applications of the present model to the real-
world flow phenomena.
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In Eqgs. (48) and (49), H.R.T. denotes the helicity-related
terms, whose detailed expressions are suppressed here. As a
first step to the modeling of Ky equation, we consider the
simplest possible model. Then we drop the helicity-related
terms [H.R.T. of Egs. (48) and (49) and the second and third
terms of Eq. (50)] in this work.

Structure of the Residual-Energy Equation
We substitute Egs. (48)-(53) with the helicity-related terms
dropped into Eq. (47), and have

DKg

_ K 2 2 € 2
5 = Cr—Kr (s —M)—CMFKRB
_CsRiKR"FV‘ (V_KVKR> (58)
K OKR

This is the residual-energy (Kg) equation we propose in this
work. The first term on the r.h.s. of Eq. (58) is the production
term of Kg. The second term on the r.h.s. of Eq. (58) shows
that |Kr| decreases in the presence of B. This corresponds to
the Alfvén effect which leads to an equipartition of the kinetic
and magnetic energies in the presence of a uniform magnetic
field.

One of the prominent features of Eq. (58) is that the gener-
ation rate of KR is proportional to Ky itself as is seen in the
r.h.s. of Eq. (58). As this result, if we have an equipartition
or Kr = 0 at the initial time, such a state holds in the later
stage of evolution. On the other hand, if a slight deviation
from equipartition occurs, such a seed deviation may grow or
decay depending on the magnitude of the velocity strain, S2,
in relation to the counterpart of the magnetic strain, M2. In
this sense, the mean-field structures in the velocity and mag-
netic field determine the evolution of the residual energy.

TOWARDS APPLICATIONS OF THE RESIDUAL-ENERGY
EQUATION

As was referred to in Introduction, the importance of the
residual energy is featured in the a- or helicity-dynamo esti-
mate and the solar-wind turbulence. We shall remark on these
subjects in the context of the residual-energy equation.

Helicity Dynamo

In the presence of the mean magnetic field B, the turbulent
kinetic helicity (u’ - w’) induces the electromotive force due to
fluctuations, Eyj(= (u’ x b’)), that is parallel or antiparallel
to B. Such a turbulent motive force leads to the mean electric
current (J) configuration parallel or antiparallel to the origi-
nal B. This is the a or helicity effect and the magnetic-field
generation mechanism based on this effect is called the o or
helicity dynamo. This dynamo, combined with other mecha-
nisms such as the differential rotation, has considered to play a
central role in the magnetic-field generation of the Sun, Earth,
galaxies, etc. It is known that the a effect does not solely de-
pend on the kinetic helicity and that the correction due to
the turbulent current helicity (b’ -j’) should be included in
the effect (Pouquet et al., 1976). Namely, it is the difference
between the kinetic and current helicities defined by

HE—<u/~w'>+<b'<j'> (59)

that determines the « or helicity effect (Fig. 2).



Figure 2: The electromotive force in the residual helicity or o
effect: A positive turbulent kinetic helicity ((u’-w’) > 0) in
the presence of the mean magnetic field B induces the elec-
tromotive force antiparallel to B (Left). On the other hand,
a positive turbulent current helicity ((b’ - j’} > 0) induces the
electromotive force parallel to B (Right).

The quantity H is called the turbulent MHD residual he-
licity, whose evolution equation is written as

DH K aJb Ny 1 ORab
— =Cur—Kg | M** = — 5 - - Qb
Dt HR € R ( Ox® 81’“) 2 Oxo
g2 K
1
4V [—- (K + Kp)Q + ”—KVH] (60)
2 oH

(Yoshizawa, 1998). Here, R is the Reynolds stress defined by
RYP = (u/*u/8 — b/*p'P) (61)

and Cyr, Cys, Cyh, and oy are model constants. The first
term in the r.h.s. shows that the residual helicity can be pro-
duced by the nonzero residual energy (Kg # 0). The first
part of the transport-rate term [the fifth term in the r.h.s. of
Eq. (60)] can be rewritten in a strongly rotating system as

Po = —(QF - V)(K + KRr) (62)

This can be interpreted as the helicity production due to
system rotation. If there is an energy inhomogeneity or
V(K + Kgr) in the direction of the rotation axis, H is sup-
plied to the system. It is anticipated that Pn predominantly
produces the residual helicity in a rotating spherical dynamo.
We should note that it is not K alone but Kr added to K
that appears in Eq. (62) and plays a critical role in the helic-
ity generation due to the system rotation. This fact suggests
that a reliable estimate of the residual energy is indispensable
in obtaining a proper estimate of the helicity generation and
consequently of the magnetic-field generation.

Solar Wind

The solar wind is a continuous plasma flow blown away
from the Sun with a speed of several hundreds km~1!. It car-
ries the solar magnetic field out into the heliosphere. The
solar wind and its magnetic field are regarded as a dynami-
cally evolving, inhomogeneous, anisotropic magneto-fluid tur-
bulence (Kallenrode, 2004). Solar-wind turbulence has been
extensively investigated by satellite observations. Some of the
characteristics of the solar-wind turbulence in the context of
the residual energy may be listed as follows (Tu and Marsch,
1995):

(i) Cross helicity: High correlations between the velocity
and magnetic fluctuations have been ubiquitously ob-
served. A typical value of the normalized cross-helicity,
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defined by the ratio of the cross-helicity spectrum to the
total energy one is near 1 at the heliocentric distance R
of 0.3 AU (1 AU = 1.5 x 101! m);

(ii) Magnetic dominance: A systematic deviation from the
equipartition between the kinetic and magnetic energies
is observed. The Alfvén ratio ra, defined by the ratio
of the spectral kinetic energy to the magnetic one, is
reported to be usually less than unity at the large R
(Fig. 3);

(iii) Radial evolutions: The values of cross helicity and the
Alfvén ratio evolve with the heliocentric distance. The
normalized cross helicity evolves from 1 at 0.3 AU to
near zero at 20 AU. Near the source surface located at
the heliocentric distance of about three times of the solar
radius (7 x 108 m), ro = 1 ~ 1.2, and ra decreases with
R and shows rp ~ 0.5 at R = 8 AU without further
decline for R > 8 AU (Fig. 3).
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Figure 3: The observed Alfvén ratio ra against the helio-
centric distance R: Note that ra is usually less than unity
(ra ~ 0.5) in the outer heliosphere (R > 1 AU) (Roberts et
al, 1990, redrawn).

The magnetic dominance and its tendency in the radial
evolution have not been well elucidated by the current MHD
theories. We consider this problem from the viewpoint of Kgr

equation.
Typical parameters for the solar wind are |U| = 400 km s~ !
(low-speed wind) and |B| = 5 nT (which corresponds to

50 km s~! in the Alfvén velocity unit for a plasma with the
number density of n = 5 cm™3). This indicates that the strain
rate of the magnetic field is much smaller than the counterpart
of the velocity, M? < S2. Then KR equation is reduced to

K K
9Kr = OrR—S%Kg
ot €

]?)2 &€ VK
—| C Cri— | =K V- ——VKgr ). (63
(ER-i- r1K>K R+ (UKR R) (63)
We consider a steady state with a nearly homogeneous Ky
distribution. In such a state, the production should balance
with the dissipation including the Alfvén effect [B2-related
term in Eq. (63)] as

K B2\ ¢
CR?SQKR ~ (CER+CT1 ?) EKR (64)



If we neglect the B2-related term in Eq. (64), we have an
estimate for the ratio of the time scale of turbulence, K/z, to
the time scale of the mean velocity shear, S~1[S = (S2)1/2],

as
KS\? _ Cer
<?) T Cr

[Cr and C. are estimated as Eq. (57)].

It is worth noting that the residual energy Ky should be
examined simultaneously with the total MHD energy K. The
observed Alfvén ratio of rp ~ 0.5 corresponds to the K /K ~
—0.3 in terms of these energies. This suggests that the residual
energy scaled by the total energy, Kr/K, is the quantity of
fundamental importance. The equation for K is written as

=0(1) — 0(10%) (65)

DK 1
—— =—-RWS% _Ey-J—c+ V- [uk(VK)]  (66)
Dt 2
where the Reynolds stress R [Eq. (61)] is expressed as
2
R*F = gKRtSO‘B — vk S + vy M*P (67)
with 7K 7K
= —C3—K = —C,—W 68
vk = zCp—K, ma=cC0y— (68)

(Cg and C,: model constants). Combined with Kr equation
[Eq. (58)], the equation for the scaled residual energy is derived
as

DK _ K )
Dt K K

where G is the growth rate of Kg/K given by

o_ L DKr 1 DK
~ Kr Dt K Dt
oY (1—70S:M+Q J)— (70)

This shows that the initial seed deviation from the equipar-
tition glows or decays depending on the cross helicity W
coupled with the velocity and magnetic-field shear rates such
as S : M(= 5% M) and ©-J. This situation is related to the
fact that KR is not affected by W while K can be suppressed
in the presence of W. In the presence of the cross helicity,
the magnitude of the scaled residual energy or |Kg /K| can be
increased owing to the decrease of K even when |Kg| is not
increased.

CONCLUDING REMARKS

With the aid of the TSDIA, expressions for the correlation
tensors in the residual-energy equation were derived. Using
the results, we proposed a model equation for the residual
energy (KR equation). The structure of Kg equation was ex-
amined. It was shown that the evolution of the scaled Ky is
determined by the cross helicity (velocity/magnetic-field cor-
relation) of turbulence.

The validity of the Kg-equation model [Eq. (58)] should be
examined through applications to the numerical simulation in
a solar-wind geometry. For this purpose, we may first con-
sider a solar wind in the equatorial plane and utilize the flow
configurations described by the current solar-wind models. In
deriving an information on the strain rates, S and M, we may
adopt the magnetic rotator model (Weber and Davis, 1967),
one of the most successful models since the pioneering work
by Parker (1958) (Figs. 4 and 5).
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Figure 4: Solar-wind speed against the heliocentric distance:
This result was obtained from a thermally-driven-wind model
[based on Parker (1958)] and is in good agreement with the
observations.
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Figure 5: Flow structures from the magnetic rotator model for
a solar wind: The magnetic-field lines advected by the solar
wind [based on Kallenrode (2004)].
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