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ABSTRACT

In present study, the nonuniform spline wavelets on finite
interval are constructed and applied to the analysis of the data
from a turbulent channel flow at Re, = 173 obtained by di-
rect numerical simulation. The global and local energy spectra
in wall-normal direction of Reynolds stress (u/u’), (v'v') and
(w'w’) are obtained, and the results provide us with quantita-
tive scale information in wall-normal direction. The presently
constructed wavelets is proved to be an efficient tool for the
multiscale decomposition of wall turbulence and it can be fur-
ther applied to the analysis and simulation of wall-turbulence.

INTRODUCTION

The main difficulty for the understanding and modelling
of turbulence is due to its multi-scale nature. The multi-
resolution analysis by wavelets has been applied to the in-
vestigation of the fascinating turbulence phenomena in recent
years, and provides us a plenty of new insights into the multi-
scale properties of turbulence. But most of the works in
literature is based on the uniformly sampled signals of free
turbulence or in the tangential direction of wall turbulence.
Due to the lack of an mathematically rigorous and efficient
tool, there are only very few studies on the multi-scale prop-
erties of wall turbulence in the wall-normal direction, which
is of significant importance for the proper understanding and
efficient modelling of the near-wall region. To do the multi-
scale analysis of wall turbulence in wall-normal direction, the
wavelets based on non-uniformly distributed data points on
an interval are required. Up to now, the only work is by
Frohlich and Uhlmann (2003), in which the orthonormal poly-
nomial wavelet is developed and applied to the analysis of
the multi-scale distribution of turbulent kinetic energy in the
wall-normal direction of channel turbulence. The nonuniform
spline wavelets, which can fit any arbitrary distributed data
points, are constructed in present study. The multi-scale dis-
tribution of Reynolds stress and transfer of turbulence kinetic
energy in the wall-normal direction are investigated using the
data base of channel turbulence obtained by direct numerical
simulation.

NONUNIFORM SPLINE WAVELETS ON [-1,1]

In the general concept of multi-resolution approximation of
L%(R) proposed by Mallat (1989), we can define the multi-
resolution approximation on an interval Q by constructing
the sequence of subspaces V; of L%(Q2). The subspace V;
satisfies that V; C Vjj1 and Ve = L2(Q), and is as-
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sumed to be spanned by a Riesz basis {¢i,j};21~ Define
W,_1 as the L2-orthogonal complement of V,_1in Vy, ie
V; =V;_1®W,_1 , and hence we obtain the direct sum
decomposition L2(Q) = Vo @ Wo & W1 @ - --. The functions
in the spaces {W; }j are referred to as wavelets and {Wj}j
as wavelet spaces.

Considering the B-splines B; g x defined on the grid se-
quence x = (xi)?:1d+1, it is of order d > 0 with the support
[#5,2;4d+1]. These B-splines B; 4 x span a linear space Sq x.
If y is a subsequence of x with y = (yi);'g{‘i"'l (m < n), then
we have Sy C Sy x. For simplicity, we denote the two sets
of B-splines as ¢; = Bj 4y (j = 1,2---,m) and v; = B qx
(j =1,2---,n). The linear spaces spanned by the two sets of
B-splines are represented by Vo = S4y and V1 = S, x, and
the orthogonal complement of Vg in V7 is Wy.

Following the method by Lyche and Morken (1992), the
spline wavelet basis of minimal support can be constructed.
The nonuniform spline wavelet 1) is orthogonal with respect
to scales but not to positions. We can construct the dual
wavelet basis to obtain the position duality. The dual wavelet
basis 1& can be represented by J) = A -1. Let <1/;, ¢T> =1

and we have A = <'¢:, '¢:T>_14

In the wavelet space, any function f can be represented as
f= aTw with d7 = aT‘A_y According to the orthogonality
and duality of the wavelets, we have

o0
/deQ:Zd}V&jJrcoT-éo 1)
Q =0

In present study, the nonuniform spline wavelets on interval
have been applied to the analysis of the wall-normal multi-
scale properties of channel turbulence. The data is obtained by
direct solving the incompressible Navier-Stokes equations with
Fourier-Galerkin and Chebyshev-Tau method. The Reynolds
number based on channel half width and wall friction velocity
is 173. The computational domain in streamwise, wall-normal
and spanwise directions is 47 X 2 X 27, and corresponding grid
system is 128 x 129 x 128. The grid distribution in the wall-
normal direction is given by y; = cos(wi/N) (i =0,1---, N).
The spline wavelets based on this grid sequence on [-1,1] are
constructed firstly, and the wall-normal multi-scale properties
of Reynolds stress are investigated.

Figure 1 shows the constructed wavelets with different scale
index j at different position ¢. It can be seen that wavelets
are not translationally invariant. For the same scale index, it
has a finer resolution near the wall.
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Figure 1: Nonuniform spline wavelets on [-1,1]. (a) j = 3, (b)
j=5.

WAVELET SPECTRA REPRESENTATION

For a better understanding of the results, we associate a
”physical scale” with each wavelet function. Let z;"z be the
center of wavelet v, which scale and position indices are de-
noted by j and i, and L is the length of the whole interval,
the physical scale is

P P
zZ.. +z.
. e S i=0
P P
R zi+z. .
8ji = 5 1—J'Tﬂ—1, if i=2i-1 (2

Zi'pi+1+z ji—1 :
s gl otherwise
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Define the physical wave number as kj; = 1/s;;, we get the
expression for the global and local energy spectral density

1 .
E(km) = N E djidjs, (3)
m
Gri/ kb <kji <kl
E(km,y) Y djid (4)
m,Y) = Ak Ji%gis

As an example, figure 2 shows the wavelet decomposition in
wall-normal direction of the instantaneous streamwise fluctu-
ating velocity. From the figure we can see that the constructed
spline wavelets have a much higher resolution near the wall
than that near the channel center, this is in accordance with
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Figure 2: Distribution of (a) original signal, (b) wavelet and
(c) dual wavelet coefficients of u'.

that the characteristic scale of turbulence in the near-wall
region is much smaller than that in the outer region. The
constructed wavelets are proved to be an efficient tool for the
multi-scale decomposition in the wall-normal direction.

MULTISCALE ANALYSIS OF REYNOLDS STRESS IN WALL-
NORM DIRECTION

The global and local energy spectra of the Reynolds stress
of (u/u'), (v'v') and (w'w’) are obtained by the method intro-
duced above.

Figure 3 shows the global wall-normal spectra of (u'u’},



(v'v") and (w'w’). From the figure, we can see that the largest
scale possesses most of the energy, which is more than 10 or-
ders of magnitude greater than that in the smallest scales. At
all the scales, the energy possessed by (u'u’) is greater than
that by (v/v') and (w'w’). At large scales, (w'w’) contains
more energy than (v'v’), while at smaller scales, (v'v’) slightly
grater than (w/w’).

The local energy spectra of (u'u’), (v'v') and (w'w’) at
yt =5, 20 and 66 are shown in figure 4, respectively. From
the figures we can see that the distributions of (u'u’), (v'v')
and (w'w’) are similar. In the viscous sublayer (y* = 5),
the energy density decrease monotonically with the increase
of the wavenumber. But in the buffer (y* = 20) and log
(y* = 66) region, there exist the characteristic scale at which
the energy spectra reaches maximum value. At y+ = 20, the
peak wavenumber is around 105 ~ 3.2, and it is around
1092 = 1.6 at yt+ = 66.

The distributions of (u/u’), (v'v') and (w'w’) in wall-
normal direction with different wavenumber band are shown
in figure 5. It can be seen that the energy concentrate near
the channel center at large scales, and with the decrease in the
scales, the peak position moves much closer to the wall. These
results are in accordance with our general knowledge about
wall turbulence, and more significantly, provides us with the
quantitative information.

CONCLUSION

In present study, the wavelets on finite interval with nonuni-
form sampling points are constructed by spline functions. This
nonuniform spline wavelets can fit any arbitrarily distributed
data points. The data from a turbulent channel flow at
Re,; = 173 obtained by direct numerical simulation is ana-
lyzed in present paper. The global and local energy spectra
in wall-normal direction of Reynolds stress (u/u’), (v'v') and
(w'w'’) are obtained, and the results provide us with quantita-
tive scale information in wall-normal direction. The presently
constructed wavelets is proved to be an efficient tool for the
multiscale decomposition of wall turbulence and it can be fur-
ther applied to the analysis and simulation of wall-turbulence.
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Figure 3: Global energy spectra of (u/u’), (v'v'),(w'w’) and
(u'v").
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Figure 5: Distribution in wall-normal direction of (a) (u'u’),
(b) (v'v') and (c) (w'w’) for 0 < k < 4.6, 4.6 < k < 21.5 and
21.5 < k < 100.

Figure 4: Local energy spectra of (a) (u'u’), (b) (vv’) and (c)
(w'w') at y* = 5, 20 and 66, respectively.
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