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ABSTRACT

Spatio-temporal cross-correlations between the turbulent
velocity components in streamwise and wall-normal direc-
tions are investigated in an effort to identify effects due to
non-normal amplification or lift up. The temporal cross-
correlation between the downstream and normal velocity com-
ponent shows a characteristic asymmetry related to the inter-
play between the streamwise streaks and pairs of streamwise
vortices. Positive values of the asymmetry function @ > 0 im-
plies that the shear flow is dominated by the no-normal lift-up
of streamwise streaks by pairs of streamwise vortices. Q < 0 is
found for regions in the shear flow where nonlinear convective
effects dominate. This systematic variation of the asymme-
try can be used to separate different layers in turbulent shear
flows.

INTRODUCTION

The large scale flows associated with coherent structures
are very effective in transporting momentum between the wall
and freestream regions and thus can contribute significantly
to frictional drag in turbulent flows (Robinson 1991). Meth-
ods for their detection (Jiménez & Pinelli 1999; Adrian 1991)
and mechanisms for their generation and evolution have been
investigated (Holmes, Lumley & Berkooz 1996; Pope 2000).
A recurrent theme in many of these investigations is the inter-
play between downstream vortices, accounting for the normal
transport, and spanwise modulations in the downstream ve-
locity, so-called streaks. Their presence is easily detected in
many flows, including plane Poiseuille flow (Hamilton, Kim &
Waleffe 1995; Schoppa & Hussain 2002), pipe Poiseuille flows
(Eggels et al. 1994; Hof et al. 2004), various homogeneous
shear flows (Kida & Tanaka 1994; Schumacher & Eckhardt
2001) and in high-Reynolds number wall bounded turbulence
(Kim, Kline & Reynolds 1971; Blackwelder & Kovasznay
1972). Studies of wall bounded flows by Hamilton et al. (1995)
led to the development of a self-sustaining mechanism for the
formation of coherent structures (Waleffe, 1997). The down-
stream vortices drive streaks, as mentioned before. When the
streaks become sufficiently strong they create normal vortices
through a linear instability. The vortices are then rotated
in downstream direction to feed the downstream streaks and
the process repeats. Various aspects of this dynamics have
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been studied and its significance for transitional flows has been
confirmed repeatedly. For fully developed turbulent flows the
significance is less clear, although rapid distortion theory and
a turbulence model by Nazarenko et al. (2000) suggest that it
could be relevant there as well. It is our aim here to analyze
certain cross-correlation functions for evidence of the dynam-
ical processes underlying this self-sustaining mechanism.

The flows we study all have a non-vanishing shear in the
mean velocity profile, S(y) = dU(y)/dy # 0, giving rise
to a non-vanishing Reynolds shear stress. Specifically, the
cross-correlation between the streamwise turbulent velocity
component v and the wall-normal or shear component v does
not vanish. Since this quantity describes transversal momen-
tum transport, such one-point correlations are at the focus
of many studies aimed at closures for the Reynolds equation
(Pope 2000, 2002). Two-point measurements of the stream-
wise and wall-normal components in a turbulent boundary
layer were first studied by Blackwelder and Kovasznay (1972)
at y/0 ~ 0.2. The boundary layer thickness ¢ is defined as the
distance & to the wall where U = 0.99U+ and U is the free-
stream velocity. Their measurements show an asymmetry of
the cross-correlations under At — — At which they interpreted
as a fingerprint of the ejection of retarded fluid outward from
the wall. The non-normal amplification mechanism provides
an intuitive explanation for such an asymmetry.

In the the next section we will summarize the stochastic
model of (Eckhardt & Pandit 2003), followed by a definition of
the spatio-temporal correlation functions, results from a direct
numerical simulation of a nearly homogeneous shear flow and
results from triple hot-wire anemometers in a wind tunnel.

A STOCHASTIC MODEL

The non-normal amplification mechanism is a linear mech-
anism for the evolution of perturbations in a shear flow, not
unlike the evolution calculated within rapid distortion theory.
In the simplest version (Eckhardt & Pandit 2003) it describes
the driving of streamwise streaks by streamwise vortices: the
vortices will decay in the absence of any further driving, but
due to the normal mixing of fluid across the shear, u will be
modulated in the spanwise direction.

Consider a linear shear profile, Uy = Sye,. Coordinates
are chosen with x pointing streamwise, z in the spanwise direc-



tion and y pointing in the direction of the shear. The Navier-
Stokes equation for the fluid velocity u linearized around this
flow is

dru+ (u-V)Ug + (Ug - V)u = ~Vp + vAu, (1)

where p is the kinematic pressure and v the kinematic viscosity
of the fluid. To keep the analysis as simple as possible we work
with Fourier modes appropriate for periodic boundary con-
ditions in spanwise and downstream directions, and free-slip
boundary conditions on two parallel planes in the wall-normal
direction. The analysis of the linear problem with Kelvin
modes shows that modulations in the downstream direction
give rise to a time-dependent wave vector and faster-than-
exponential damping. Farrell & Ioannou (1993) also show
that the most important modes for non-normal amplification
do not have a downstream variation. Therefore, we consider
only perturbations with wave numbers k = (0, ky, k. ), where
k. is continuous and ky = 7n/d, with n an integer and d the
distance between the bounding planes.

In order to highlight the essentials of non-normal amplifi-
cation, we now take a velocity field consisting of two modes,
namely, a spanwise streak

[ sin az cos fy

ug = 0 , (2)
0
and a downstream vortex
0
u, = | acosazsinfy |, (3)
— B sin az cos By
with amplitudes s(t) and w(t), i.e.,
u = s(t)us + w(t)uy, . (4)

In the linearized equation the pressure disappears as the ve-
locity fields are divergence-free. The term (Ug-V)u drops out
and (u-V)Ujg results in a coupling between vortex and streak:

(w) N (_I/(azw% —u(afw‘z)) (w) '

The matrix on the right hand side is not symmetric because
of the coupling of both modes through the term (u-V)Uq =
Suye,. The dynamics that follows from the non-normal sys-
tem (5) has exponentially decaying vortices that drive span-
wise streaks: if sg and wg denote the initial amplitudes, then

2 2
s(t) = (so+ Swot)e V(@ T
2 a2
w(t) = wpe Y@+, (6)
Clearly, even if there is no streak initially (i.e., so = 0), there
will be one as time progresses as a consequence of the mixing

induced by the downstream vortex. Eventually, however, both
will decay. The maximal amplitude of the streak follows from
the maximum of texp(—v(a? + #2)t), which occurs at a time

1
v(a? + pB2)
Since the maximal amplitude of the downstream component of

the streak u; is «, the maximal modulation of the downstream
velocity component follows to be

(7
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A more complete analysis these mode interactions and the
choice of optimal solutions is given by Chapman (2002).
Thus, with v as an indicator of the vortices and the strength
of mixing, and u as one for the response, a temporal cross cor-
relation Cyy (At) = (u(t + At)v(¢))+ will be asymmetric: the
vortex has a chance to influence w for At > 0, but not for
At < 0. In a linear model for vortex—streak interactions with
two degrees of freedom driven by stochastic forces the cor-
relations can be calculated analytically, and the asymmetry
becomes transparent (Eckhardt & Pandit 2003). Quantita-
tively, for this kind of flow, the maximum is delayed by about
one time unit and overshoots the value at zero by about 20%.

THE CORRELATION FUNCTION

Clearly, there are many differences between the linear
model with stochastic forcing and fully turbulent dynamics,
where nonlinear effects are omnipresent and where the forc-
ing is self-consistently provided by the turbulent dynamics.
‘We, therefore, turn to data from direct numerical simulations
(DNS) of nearly homogeneous shear flows. The DNS allows
for an extension to two-point cross-correlations in space and
time since they do not have to rely on Taylor’s frozen flow
hypothesis.

The quantity we focus on is the correlation function be-
tween the turbulent wall-normal velocity component v and
the turbulent streamwise component u, displaced in the down-
stream direction by Az and in time by At,

(w(z,y, 2, )u(z + Az, y, 2,6 + At)) w2t
<U(937y,z71?)“(937 yaz7t)>Wa27i '

Cou(At, Az y) =

(9)

The averages are over time and also over all points in an z-

z-plane at fixed height y. Time correlations at one point are
given by

~ v(x,y, 2, u(r,y, 2,0 + Al))z, 2,
Cou(Ab ) = Cou(A,0,5) = U Jul i

((z,y, 2, )ulz, Y, 2, 1)),z 0
10

In order to quantify the asymmetry effects we introduce the
following measure for the temporal cross-correlations:

Cou(At) — Cou(—At
Quuan = B0 = Conl220),
Cvu(At) + /vu(“At)

(11)

(the dependence on height has been suppressed in these ex-
pressions). For the extended correlations due to the non-
normal amplification we expect (:‘m(/_\t) > (:’w,(—At) > 0
and (:'W(At) < (:‘w(—At) < 0, so that Quy > 0 for these
cases.

DIRECT NUMERICAL SIMULATIONS

The direct numerical simulations of a turbulent shear flow
also refer to a flow bounded by two parallel free-slip plates,
driven by a volume force that sustains a linear shear flow in
the mean, U(y) = Sy, except for a small boundary layer near
the plates. More details on the numerical procedure and on
the statistical stationarity of the flow are given in Schumacher
& Eckhardt (2000) and Schumacher (2004).

In Fig. la we show the space-time contours of the cross-
correlations for a DNS with spatial resolution of 128 x 65 x 128
grid points for a box with an aspect ratio of 27 : 1 : 27
and a Taylor microscale Reynolds number Ry = 79 which is
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Figure 1: Space-time cross-correlation Cyy(At, Ax;y) of a
nearly homogeneous shear flow. Data are taken from the
DNS at a height y/Ly = 0.11. The Reynolds number Re =
ULy /v = 1800 where U is the mean turbulent velocity at
the boundary. (a) Space-time plot of the cross-correlations.
The contours increase in steps of 0.1 and the unit value is
at the origin. The solid line represents the dimensionless
mean turbulent velocity U(y/Ly = 0.11) = 0.77. (b) Tem-
poral cross-correlation along Az = 0 for different heights:
A :y/Ly = 013, 8 : y/L, = 0.25, o : y/Ly, = 0.50. (c)
Asymmetry coefficient for Cyy(At;y) at the same heights as

(b).

determined by Ry = /15/(ve) (u?). ¢ is the mean energy dis-
sipation rate. The spatio-temporal correlation function shows
an asymmetry with respect to time and the iso-countours
are oval and not aligned with the coordinate axis. Thus,
even though more spatial degrees of freedom are present, the
Reynolds number is higher, and the fluctuation come from the
fully developped turbulence, the non-normal amplification is
reflected in the correlation function.

On closer look some differences begin to appear. In partic-
ular, the asymmetry measure (cf. Eq. (11)) in Fig. 2b shows
that the correlation function for very short times has the op-
posite sign, Quvy < 0. These negative values appear in almost
all heights across the layer: the time interval over which they

239

Figure 2: Snapshot of the two turbulent velocity fields enter-
ing the cross-correlation function. Data are a slice cut from
a DNS at Ry = 166. The turbulent downstream velocity u is
indicated by shading for values between u between 0 and 1.5,
only. The contourlines show three isolevels of the wall-normal
component v at values of —0.8, —0.5 and —0.2. The maxima
are shifted relative to each other by a small downstream dis-
tance that corresponds with the shift of the maximum of the
space-time cross-correlation by Ax as observed in Fig. la.

are present is smallest close to the wall and increases as one
approaches the center. Apparently, close to the center, many
modes of different vertical wave length contribute and swamp
the effects of the non-normal amplification. A related phe-
nomenon will appear in boundary layer flows.

A spatial plot of the turbulent streamwise velocity compo-
nent u(x,yo,2,%0) and the turbulent wall-normal component
v(x, Yo, z,to) for one instant in the z-z plane (see Fig. 2) re-
veals that the contributions to the cross-correlation function
come from fragmented regions, of an extension compatible
with the dimensions of coherent structures. Negative con-
tours of v indicate streamwise vortices which are lifting up
the streamwise streaks which are shown as gray-filled con-
tours of w. Note that the maxima of v and v contours are
displaced slightly in accordance with the observation that the
maximum of the space-time cross-correlation is not at the ori-
gin Az = At = 0 in Fig. 1la.

This shift can be rationalized by the observation that a
streamwise vortex pair centered at height y will be advected
with the corresponding mean streamwise velocity at that
height, namely U(y), The pair will mix slower moving fluid
into a region that streams on average faster thus diminishing
locally the advection velocity U. to values below the mean
velocity U(y) for an instant. But this is the velocity which
will advect the streak that is about being lifted up and thus
remaining behind the vortex pair. As a result a spatial shift
of the most intense cross-correlation by —Ax follows.

Both examples of correlation functions shown in Figs. 1
and 2 and many others for different aspect ratios and Reynolds
numbers show an inclination of the isocountours in the spatio-
temporal cross-correlations Clyy(Af, Az;y). Since the two
axes being compared have dimensions of time and length, the



inclination has dimension of velocity: but as the comparison
with the straight lines in both figures shows, this velocity tends
to be smaller than the mean velocity at that height, U(y). The
speed with which these structures are advected is systemat-
ically smaller than the mean advection. We can relate this
effect to an asymmetry of the spatial correlation function of
the streamwise velocity in the wall-normal direction, as mea-
sured by

C'M1L(A:I77 Ay, Z/O) = (u(:):, Yo, 2, t)u(x +Az,y0+ Ay, z, t)>l‘-,2»t .

(12)
We found that this correlation function is asymmetric as well
and has different correlation length with respect to y taken
from the level yo of the measurement. The autocorrelations
are obviously influenced by the presence of the free-slip walls
at y = 0 and y = L. If we estimate the mean advection speed
of the coherent structures from an average of the downstream
speed over a domain determined by the full width at half max-
imum of Cyy(Az, Ay,yo), we find

1 b2 _
/ U(y)dy .

by — Ly Jo,

Ue = (13)
> and ¢1 are the widths at half of the maximum of the
asymmetric Cyy(Az = 0,Ay,y0). The convection velocity
as defined by (13) becomes smaller as the mean velocity and
coincides with the inclination of the space-time contours of the
velocity cross-correlations of Fig. 1. The coherent structures
thus move with the downstream speed as determined by an
average over their size.

TURBULENT BOUNDARY LAYER

The third example for which we determine cross-correlation
functions are measurements obtained in a high-Reynolds num-
ber boundary layer flow. Velocity data were obtained with
triple hot-wire anemometers, such that all three velocity com-
ponents could be extracted. The data are from a wind tun-
nel of the Hermann-Féttinger Institute (HFI) in Berlin at
Uso = 10m/s and the German-Dutch Windtunnel (DNW) at
Us = 80m/s. The set-up and data aquisition are described in
more detail in Knobloch & Fernholz (2004). Measurements at
HFI were done with a sampling rate of 20 kHz, at the DNW
with 125 kHz. Typical data sets contained about a million
data points at HFI and about 5 million data points at DNW.
The boundary layer width was found to be 6 = 63mm for
HFI and § = 240mm for DNW. Taylor microscale Reynolds
numbers up to 1614 were reached in the DNW device.

In contrast to the numerical studies in the previous sec-
tion, we have velocity time traces for a single spatial location
only. Normally, one would invoke Taylors hypothesis to relate
time delays to spatial separations and hence time correlations
with spatial correlations. But as the results above show, it
is possible to obtain the information about lift-up from cross-
correlations of time series from a single point, if the times are
short compared to the decorrelation times.

The asymmetry measure for six data sets (three from HFI
and three from DNW) are shown in Fig. 3. The two data
sets allow to compare different distances from the wall and
different Reynolds numbers. For a fixed Reynolds number the
cross correlation function closest to the wall has a region with
negative values of the asymmetry measure @y (At), followed
by a region of positive values for intermediate times (until the
correlation functions becomes so small that estimates of the
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asymmetry become unreliable). As one moves away from the
wall, the region with negative values increases and the values
become more negative. For the points furthest away from the
wall no reversal to positive values is detected. The trends
in the behaviour are similar to that observed in the direct
numerical simulations with its free slip boundary conditions,
suggesting that this effect is related to the shear and viscous
boundary layers.

The asymmetry measures for the two data sets from FHI
and DNW are calculated at comparable heights when mea-
sured in units of the boundary layer thickness, y/§. They show
simliar kind of behaviour, suggesting that a non-normal liftup
related asymmetry in the cross-correlation function can be
expected for positions y/d < 0.05. No such comparison is pos-
sible when the height is expressed in wall units. For instance,
the measurement closest to the walls has height yT ~ 34 in
the case of HFI data, but y= ~ 709 in the case of the DNW
data. Thus while numerous studies suggest that streamwise
streaks and pairs of streamwise vortices can be observed be-
low y* < 100 (Jiménez, J. & Pinelli 1999, Pope 2000), the
cross correlation function measurements suggest that some
remnant of them may be active at even higher 4™, and that
the relevant length scale are not wall units but boundary layer
thickness. Both observations can be reconciled once the inter-
mittent bursting activity arising from the coherent structures
in the viscous sublayer is taken into account: it is known (see
e.g. Blackwelder & Kovaszany, 1972) that while the stream-
wise vortices and streaks are present only close to the wall,
the ejection of vorticity from the walls can reach further up
and affect the correlation functions. For this process the rel-
ative position within the boundary layer is important, hence
the scaling with 4.

SUMMARY

The comparitive study of two shear flows presented here
shows that the temporal cross correlation between the down-
stream and normal velocities carries information about the
dynamical processes responsible for this component of the
Reynolds stress tensor. Closest to the wall the Reynolds stress
tensor shows a clear asymmetry in time. In boundary lay-
ers this asymmetry is controlled by the height relative to the
boundary layer thickness and not by that relative to the wall-
normal units. This then suggests that at heights of several
hundreds of wall units, where the correlation functions still
has the proper asymmetry, it detects vorticity ejected from
the near wall layer, rather than the vortices and streaks them-
selves.
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Figure 3: Asymmetry coefficient Q. (At) for two sets of tur-
bulent boundary layer data. Time is given in units of §/Us
for both figures. Panel (a): HFI measurement at Res = 41600
for three different heights ¢ = y/d above the wall, black trian-
gles: § = 0.02, gray filled squares: § = 0.11 and open circles:
¢ = 0.31. Panel (b): DNW measurement at Reynolds number
Res = 1237900. Here black triangles: g = 0.02, gray filled
squares: ¢ = 0.11 and open circles: § = 0.34.
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