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ABSTRACT

We consider homogeneous turbulence in a conducting fluid
that is exposed to a uniform external magnetic field while
being sheared in fixed and rotating frames. We take both
the frame-rotation axis and the applied magnetic field to be
aligned in the direction normal to the plane of the mean shear.
We find that a key parameter determining the structural mor-
phology of the flow is the ratio of the time scale of the mean
shear to the Joule time, Tshear/Tm. When Tghear << Tm, We
find that the turbulence structures tend to align preferentially
with the streamwise direction irrespective of the magnetic
Reynolds number, R,,. When Tghear >> Tm, we find that
at low Ry, the turbulent eddies become elongated and aligned
with the magnetic field, but at moderately high R, there is
partial streamwise alignment of the eddies. When Tghear = Tm,
we find that competing mechanisms tend to produce different
structural anisotropies, and small variations in dimensionless
parameters can have a strong effect on the structure of the
evolving flow. For example, at R,, << 1, a preferential
alignment of structures in the direction of the magnetic field
emerges as the flow evolves, consistent with the predictions
of the quasi-static approach. For R, ~ 1, the structures are
found to be equally aligned in the streamwise and spanwise di-
rection at large times. However, when R,, is moderately high
(10 £ Rm < 50) this strong spanwise alignment is replaced
by a preferential alignment of structures in the streamwise di-
rection. Counter to intuition, we found evidence that strong
rotation in combination with a spanwise magnetic field tends
to promote a streamwise alignment of the eddies, at least when

Tshear =~ Tm-

1. INTRODUCTION

The combined effects of system rotation and mean shear
on magnetohydrodynamic turbulence exposed to an external
magnetic field are important in a number of physical phenom-
ena and engineering applications. Examples include phenom-
ena such as the accretion of Keplerian disks and the Earth’s
dynamo, and applications such as plasma flows associated
with fusion, magnetic steering technologies, and magnetogas-

231

dynamic (MGD) schemes for flow control and propulsion in
advanced hypersonic vehicles. For Keplerian disks to accrete
a source of enhanced angular momentum transport must be
present in the disk. A key issue is whether, in the absence of
stirring, hydrodynamic shear turbulence can be self-sustaining
in Keplerian disks, or whether some additional mechanism,
such as magnetic fields and thermal stratification must also
be active. From an engineering point of view, many of the
CFD codes used for the prediction of MHD and MGD flows
rely on simple turbulence closures, like k-¢ models, with ad-
ditional ad hoc modifications to account for the effects of the
magnetic field. Such closures neglect the important dynamical
role that the structure of the turbulence plays in the interac-
tion between the flow and the applied magnetic field, and as
a result they lack generality and robustness.

At a fundamental level it is well known that, when act-
ing alone, mean shear, frame rotation, and external mag-
netic fields modify the turbulence structure and induce strong
anisotropy. Mean shear tends to produce long streamwise ed-
dies, frame rotation tends to produce long columnar structures
aligned with the rotation axis, and magnetic fields, through
the action of the Lorentz force, produce structure elongation
along the direction of the field. Despite the importance of
MHD turbulent shear flows in both our physical environment
and in our technology, our understanding of the structure
modifications that take place when all three effects act concur-
rently is at best incomplete. This can be attributed partly to
the lack of modern, high resolution simulations of these flows.

In this work, we have been carrying out a series of large-
scale direct numerical simulations that aim to answer some
of the questions raised above. Our goal is to understand the
mechanisms that lead to instability and structural anisotropy
when the combined effects of mean shear, system rotation and
external magnetic fields act concurrently on homogeneous tur-
bulence. We hope that this understanding will enable us to
develop improved turbulence closures for MHD applications.

1.1 The Structure in the Case of Hydrodynamic Shear
In the purely hydrodynamic case, it is well documented that



Figure 1: Configuration for shear in a rotating frame. Here B
denotes the external magnetic field (when applicable), Qf the
frame rotation rate, and S the shear rate.

mean shear tends to elongate and align the turbulence struc-
tures in the direction of the mean flow (Rogers and Moin,
1987) and that frame rotation can act to either stabilize or
destabilize homogeneous shear flow. For homogeneous turbu-
lence that is being sheared in a rotating frame (see Fig.1), the
morphology of the structure depends weakly on the ratio of
the frame rotation rate to the mean shear rate, but in general
a preferential streamwise alignment of the turbulent eddies is
maintained.

1.2 The Structure of Undeformed MHD turbulence

For vanishingly small magnetic Reynolds numbers (R, <
1), and in the absence of mean shear or frame rotation, the
induced magnetic fluctuations are much weaker than the ap-
plied field and their characteristic time scale, based on their
diffusion, is much shorter than the eddy turnover time. A
classical approximation for undeformed MHD turbulence at
low Ry, is the Quasi-Static (QS) approximation. In this ap-
proximation, the induced magnetic field fluctuations become a
linear function of the velocity field. Kassinos et al. (2002) and
Knaepen et al. (2004) considered the case of initially isotropic
decaying MHD turbulence, and concluded that the QS approx-
imation was reasonably accurate for R, < 1. For higher Ry,
where the QS approximation fails, they proposed the use of
the Quasi-Linear (QL) approximation, which amounts to re-
taining the unsteady term in the magnetic induction equation,
retaining the non-linear hydrodynamic terms in the fluctuat-
ing momentum equation, but dropping all the nonlinear terms
involving the magnetic fluctuations. They carried out a series
of DNS and concluded that in unstrained MHD turbulence the
QL approximation was valid for the entire range of magnetic
Reynolds numbers they examined (Rn, < 30).

1.3 The Structure of Sheared and rotating MHD turbulence

Surprisingly, little work has been done to explore the struc-
ture of homogeneous MHD turbulence under the influence of
mean shear and frame rotation. The objective of this work
is to use DNS to probe the fundamental physics in sheared
MHD turbulence. Primarily, we are interested in understand-
ing the effects of shear and rotation on the dynamics of MHD
turbulence, including the structural morphology and stability
of these flows. Stability modifications due to the presence of
the magnetic field can potentially have implications for the
evolution of stellar accretion disks and they constitute an im-
portant effect that must be built into a successful model for
MHD turbulence.

We start by discussing the relevant dimensionless parame-
ters that characterize MHD and MGD flows in the presence of

mean shear and frame rotation. In Section 3 we introduce the
governing equations for ideal MHD. The numerical code and
associated initial conditions are described in Section 4, while
Section 5 is devoted to a discussion of the most important
results. A concluding summary is given in Section 6.

2. DIMENSIONLESS PARAMETERS

The effects of a uniform magnetic field applied to un-
strained homogeneous turbulence in an electrically conductive
fluid are characterized by three dimensionless parameters. The
first of these is the magnetic Reynolds number

vL v, L?
Rn=—=(3)(—), (1)
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where L is the integral length scale and v is the r.m.s. fluctu-
ating velocity
v =+/Rii/3, Rij = . (2)
Here u; is the fluctuating velocity, and 7 is the magnetic dif-
fusivity
n=1/(opn") (3)

where ¢ is the electric conductivity of the fluid, and p* is
the fluid magnetic permeability (here we use pu* for the mag-
netic permeability and reserve p for the dynamic viscosity).
Thus the magnetic Reynolds number represents the ratio of
the characteristic time scale for diffusion of the magnetic field
to the time scale of the turbulence. In the case of vanishingly
small R,,, the distortion of the magnetic field lines by the fluid
turbulence is sufficiently small that the induced magnetic fluc-
tuations b around the mean (imposed) magnetic field B are
also small.

The second parameter is the magnetic Prandtl number
representing the ratio of R,, to the hydrodynamic Reynolds
number Rej,
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The magnetic-interaction number (or Stuart number) is
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where B is the magnitude of the magnetic field, Bt =
B/+/p*p is the magnetic field expressed in Alfven units, and
p is the fluid density. N represents the ratio of the large-eddy
turnover time 7 to the Joule time 7, i.e. the characteris-
tic time scale for dissipation of turbulent kinetic energy by
the action of the Lorentz force. N parametrizes the abil-
ity of an imposed magnetic field to drive the turbulence to
a two-dimensional three-component state. In the absence of
mean shear and frame rotation, the continuous action of the
Lorentz force tends to concentrate energy in modes indepen-
dent of the coordinate direction aligned with B. As a two-
dimensional state is approached, Joule dissipation decreases
because fewer and fewer modes with gradients in the direc-
tion of B are left available. In addition, the tendency towards
two-dimensionality and anisotropy is continuously opposed by
non-linear angular energy transfer from modes perpendicular
to B to other modes, which tends to restore isotropy. If N is
larger than some critical value N, the Lorentz force is able to
drive the turbulence to a state of complete two-dimensionality.
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For smaller N, the Joule dissipation is balanced by non-linear
transfer before a complete two-dimensionality is reached. For
very small N (N < 1), the anisotropy induced by the Joule
dissipation is negligible. Here we take the initial value of mag-
netic interaction number to be Ny = 0.

In the presence of mean shear and frame rotation, two ad-
ditional parameters become important. The first of these is
the ratio of the time scale of the mean shear to the Joule time
Tm,

(Bext)Q B M

nS Tm

M= (6)

where S is the mean shear rate. The second is the ratio of the
frame rotation rate Qf to shear rate S,

Qf
A= — 7
< (@)
where Qf = —Q{Q so that positive values of A correspond

to a frame counter-rotating relative to the sense of rotation
associated with the mean shear (see Fig. 1).

3. GOVERNING EQUATIONS

Transport in homogeneous MHD shear flow is described by
the incompressible MHD equations

G =0  bi; =0 (8)

S 1 . .5 _
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where P* is the total pressure including magnetic contribu-
tions, b; is the magnetic field in Alfven units, and @; are the
velocity components. Next, the flow variables are transformed
into a rotating frame, where they are explicitly decomposed
into a mean and a fluctuating part. We solve the resulting
governing equations for the fluctuation fields in a coordinate
system that deforms with the mean flow so that Fourier de-
composition methods can be employed. In this deforming

coordinate system, the transformed equations become
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Here, v; and b; are the components of velocity and magnetic
fluctuation fields transformed in the rotating frame, x; are
deforming coordinates, G;; = U; ; is the mean velocity gra-
dient tensor, and A;; is the (Rogallo) transformation matrix
satisfying

Az + A5Gy, = 0. (13)
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Table 1: Turbulence characteristics of the initial velocity field.
All quantities are in MKS units.

Resolution 2563
Box size (€x X £y X £3) 21 X 27 X 27
Rms velocity (v) 3.099
Viscosity 0.006
Integral length-scale

3n/4 x ([ k=VE(k)dk/ [ E(k)dk)) 0.322
Re = uL/v 166
Dissipation (¢) 47.876
Dissipation scale (y = (13/¢)(1/9) 0.0082

EmaxY 1.82
Microscale Reynolds number

(Rey = /15/(ve)u?) 69.40

Eddy turnover time (7 = (3/2)u/¢) 0.097

In the hydrodynamic case, one can impose any mean strain
tensor, but once the mean strain is specified, the homogene-
ity requirement imposes constraints on the evolution of the
mean rotation tensor. In the MHD case, these constraints in-
volve gradients of the mean magnetic field as well. However,
when the frame rotation axis and the uniform mean magnetic
field vector are perpendicular to the plane of shear, these con-
straints leave the mean rotation unmodified and need not be
considered.

4. NUMERICAL CODE AND INITIAL CONDITIONS

We have used a pseudo-spectral code with the ability to
simulate the full MHD equations (11) and (12). The numerical
method used to solve the governing equations for homogeneous
shear flows is similar to that introduced by Rogallo (1981).
The governing equations are transformed to a set of coordi-
nates which deform with the mean flow. This allows Fourier
pseudo-spectral methods, with periodic boundary conditions,
to be used for the representation of the spatial variation of the
flow variables. Time advance is accomplished by a third-order
Runge-Kutta method. Since the mean imposed shear skews
the computational grid with time, periodic remeshing of the
grid is needed in order to allow the simulation to progress to
large total shear, where a self-preserving regime might be ex-
pected to prevail. The periodic remeshing introduces aliasing
errors that are removed by a de-aliasing procedure included in
the code. An MPI based version of the code has been imple-
mented in the Vectoral language and tested individually for
accuracy, grid independence, and scalability.

All the runs presented here have a resolution of 2562 Fourier
modes in a (27)3 computational domain. The initial condi-
tions for the velocity were common to all cases. They were
created starting with a pulse of energy at low wave numbers
in Fourier space and a random distribution of phases for the
Fourier modes. In order to let the higher-order statistics de-
velop, the flow was evolved in the absence of mean shear or
frame rotation and without a mean magnetic field, while forc-
ing was being applied to the low wave number region of the
spectrum. This initial phase was continued until an equilib-
rium state was reached and the skewness acquired its peak
value. At that time, hereafter referred to as tgp, the external
magnetic field, mean shear and frame rotation were switched
on while the artificial forcing was eliminated. The character-
istics of the initial field at time tg are summarized in Table 1.



Table 2: Parameter values for the runs considered here.

Case n Be® Ny Rmo M A
Cl.2.1  1.000 9.800 10 1 0.1 0,1
C1.2.30 0.033 1.789 10 30 0.1 0,1
C2.2.1  1.000 9.800 10 1 2 01,421
C2.2.30  0.033 1.789 10 30 2 04,131
C2.250 0.020 1.386 10 50 2 0,%,%,%,1
C3.2.1  1.000 9.800 10 1 20 0,:
C3.2.30 0.033 1.789 10 30 20 0+

In the MHD runs, an initial condition for b; has to be chosen
at t = to. Here we have made the choice b;(tp) = 0. In other
words, our simulations describe the response of an initially
non-magnetized turbulent conductive fluid to the application
of a mean magnetic field. The corresponding completely-
linearized problem in the absence of mean shear and frame
rotation has been described in detail in Moffatt (1967).

4.1 Parameters

In order to distinguish between our numerical runs, we will
vary the initial magnetic Reynolds number Ry, the initial
magnetic interaction number Np, the ratio of the timescale
of the mean shear to that for magnetic diffusion M, and the
ratio of the frame rotation rate to the mean shear rate A.
Specification of Ry, and N completely determines n and B°**
according to:

2
Bl o=t (14)

m m

The values of these parameters for the different runs con-
sidered are summarized in Table 2.

The name convention for the cases listed in Table 2 is based
on the value of M, the Magnetic Stuart number Ng, and the
magnetic Reynolds number R,,g. Thus, the identification
number of run CX.Y.Z can be interpreted as follows:

Bext —

X=1=>My=01 X=2=My=2 X=3= My=20
Y=1=No=1 Y=2=Ng=10

(15)

and where Z is such that R,, = Z. Thus, for the first two
runs we have M = 0.1; for the next three M = 2, and finally,
for the last two runs we have M = 20. In all cases No = 0.

5. RESULTS

In this section we discuss some of the more important re-
sults obtained by carrying out the simulations described in the
previous sections.

5.1 Eddy alignment

The effects of mean shear, frame rotation, and external
magnetic fields on the turbulence structure are well under-
stood whenever these act independently. Mean shear tends to
stretch and align the turbulent eddies in the streamwise di-
rection, strong rotation tends to induce columnar structures
aligned with the rotation axis, while the action of the Lorentz
force tends, through Joule dissipation, to promote long struc-
tures aligned with the mean magnetic field. Here, we examine

0.61 e ——— 4 061 R

Figure 2: Structure anisotropy as measured by d;; (see 16) in
homogeneous MHD turbulence being sheared in a fixed frame
(A = 0) for the case with M = Tghear/Tm = 0.1:
di1;—==== daa; —-— ds3; —--— di2. (a) Case C121 with
Ry, =1, N =10; (b) Case C1230 with Ry, = 30, N = 10. The
induced structural anisotropy is completely determined by the
mean shear and is independent of the magnetic Reynolds.

eddy alignment under the combined action of S, Qf and Bext,
We will first look at a series of simulations in a fixed frame
(zero frame rotation) in an effort to establish the effects of the
simultaneous action of the mean shear and a mean spanwise
magnetic field on the turbulence structure. Then we will look
at these effects in a frame rotating about a spanwise axis.

The diagnostic tool used to determine eddy alignment is the
structure dimensionality tensor (Kassinos et al., 2001), which
for homogeneous turbulence is defined by

D;; = /E(k) % d®*k dij = D;;/Dg, Dri, = % = 2k.

(16)
Note that each diagonal component of d;; can attain values
only between 0 and 1, and that for turbulence in which the
energy-containing structures are elongated in the z, direc-
tion, dooe — 0. On the other hand doo — 1 corresponds to
structures that are narrow and have strong gradients in the
T direction.

Figure 2 shows the evolution of the structure dimension-
ality when M = 7Tghear/™m = 0.1. Two different values of
the magnetic Reynolds number (R,, = 1 and R,, = 30) are
considered. In both cases, the magnetic interaction number
is N = 10. The evolution of the dimensionality anisotropy is
dominated by the mean shear and is independent of the R,,.
At large times, di;1 ~ 0, indicating a predominance of long
streamwise eddies.

The evolution of the dimensionality anisotropy for M = 20
is shown in Figure 3. As expected, in this case the external
spanwise magnetic field has a strong influence on the devel-
opment of structure anisotropy. In the case when R,, = 1,
the turbulence is driven towards a two-dimensional (2D) state
corresponding to almost axisymmetric structures aligned with
the direction of the magnetic field (ds3 — 0). Note how-
ever that when R,, = 30, the magnetic field is less effective
in imposing the spanwise eddy alignment. In fact, at this
moderately high R,,, the overall dimensionality anisotropy is
suppressed as compared to the R,, = 1 case. There is also ev-
idence that at large times the mean shear is contributing more
effectively in the anisotropy development, and as a result di1
and dz3 seem to decrease at approximately the same rate.
This suggests that initially the structures become elongated
in the spanwise direction under the action of the magnetic
field. However, as the structures elongate the Joule dissipa-
tion becomes less effective, and this allows the shear to induce
a streamwise elongation.
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Figure 3: Evolution of the normalized dimensionality tensor in
homogeneous MHD turbulence being sheared in a fixed frame
()‘ = 0) with M = Tshear/Tm = 20: di1; ——== da2;
—-— dz3; —--— di2. (a) Case C321 with R,, = 1, N = 10;
(b) Case C3230 with Ry, =30,N = 10.
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Figure 4: Evolution of the normalized dimensionality tensor in
homogeneous MHD turbulence being sheared in a fixed frame
(A= 0) with M = Tshear/tm =2 di1; =——— da2;
—-— d33; —"— di2. (a) Case C221 with R, =1, N =10
(b) Case C2230 with Ry, = 30, N = 10.

5 1‘0 1'5 20 25
time, t/tm,
Figure 5: Evolution of the normalized dimensionality tensor
in homogeneous MHD turbulence being sheared in a rotating

frame with M = Tshear/tm =2 di1; —==== dag;
—-— dz3; —"— di2. (a) Case C221 with R,, = 1,N = 10,
and A = 0 (no rotation); (b) Case C221 with B =0 and A =
0.25 (hydrodynamic case); (c) Case 221 with R, = 1, N = 10,
and A = 0.25.

A more interesting anisotropy evolution is obtained in the
case when M = 2, that is when the mean shear time scale
is comparable to the Joule time. Figure 4a shows the evo-
lution of the dimensionality anisotropy when R, = 1. In
this case, d11 = d33 — 0 suggesting that the mean shear and
the external field are equally effective in inducing structural
anisotropy. As result, at large times the turbulence is charac-
terized by thin (da2 — 1) horizontal sheets (see also Fig. 6a) .
However, when R, = 30 (Fig. 4b) the mean shear dominates,
inducing long, roughly axisymmetric, eddies aligned with the
streamwise direction (d11 — 0).
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(a)

Figure 6: Velocity magnitude contours showing the structural
anisotropy induced at large times by the combined action of
spanwise frame rotation and spanwise mean magnetic field:
(a) Case C221 (M = 2,N = 10,R,, = 1) with zero frame
rotation. The structure is characterized by horizontal slabs
(equal elongation in the streamwise and spanwise direction;
(b) Case C221 with frame rotation rate A = 0.25 and zero
magnetic field (hydrodynamic case).

So far we have considered the evolution of structure
anisotropy in a fixed frame. Figure 5 shows the develop-
ment of the normalized dimensionality tensor in the rotating
frame for the case M = 2, N = 10, and at R,, = 1. Fig-
ure 5a corresponds to A = 0 and shows that in the fixed
frame, the magnetic field and the mean shear are equally
effective in inducing two-dimensionality, and as a result the
structure evolves towards a state characterized by horizontal
sheets (see also Fig. 6a). In a frame rotating about the span-
wise axis at a rate A = 0.25, and in the absence of an external
magnetic field (hydrodynamic case), the structure evolves to-
wards a state characterized by elongated streamwise eddies
(d11 — 0), as shown in Fig. 5b. Note however, that these ed-
dies tend to be somewhat elongated in the x5 direction, that
is in the flow-normal direction within the frame of the mean
shear (dz2 < dz3). This flattening of the eddies is also evident
in the structure visualization of Fig. 6b. An interesting bifur-
cation seems to take place in the case when the frame rotation
and the external magnetic field act concurrently (Fig. 5¢). At
short times, the evolution of the normalized dimensionality
tensor is similar to the one obtained in the non-rotating case,
and reveals a balance between the effects of the mean shear
and the external magnetic field. At larger times, however
(t/Tm R 5) a sudden transition takes place leading eventu-
ally to a state characterized by vertical slabs (d11 ~ daa — 0
and d33 — 1).

5.2 Scale Dependence of Anisotropy

The scale dependence of anisotropy in incompressible MHD
turbulence at moderate magnetic Reynolds numbers remains
an open question. For compressible turbulence at high mag-
netic Reynolds numbers, Cho and Lazarian (2003) have found
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Figure 7: Scale dependence of anisotropy as measured by
d;; (k) (see 17) in homogeneous MHD turbulence being sheared
in a rotating frame: di1(k); ———= daa(k); — —
dss(k). (a) Case C2250 (Rpm = 50,N = 10,M = 2) with
A =0.75and t/tym = 31.7, and (b) Case C2250 (R, = 50, N =
10, M = 2) with A = 1.0 and t/t,, = 38.0.

that Alfven mode velocity fluctuations show a strong scale de-
pendence, with the small scales being more anisotropic than
the larger ones.

We have attempted to obtain a scale dependent measure
of anisotropy using the spectra of the turbulence structure
dimensionality tensor Kassinos et al.(2001). Thus we define

ikj
dij (k) = 3 B(k)=5"/ D> E(k)

shell shell

k

dii(k) =1,  (17)

where the summation in (17) is over shells in Fourier space.
For turbulence that is isotropic at the scale set by k we have
d;;(k) = d;5/3. For turbulence that it is two-dimensional (2D)
independent of direction zq, daa (k) = 0.

Figure 7 shows the anisotropy levels obtained for two cases
with frame rotation (C2250 with A = 0.75 and C2250 with
A = 1.0). Variations at very low wavenumbers are spurious
and attributed to limited sample. On the other end of the
spectrum, variations beyond k ~ 128 are again contaminated
by the progressive loss of modes that extend beyond the limits
of the computational box (for these 2562 simulations). In the
intermediate range that lies between these limits, anisotropy
as measured by d;; (k) exhibits a weak increase with wave num-
ber, especially in the flow-normal directions. This trend is
suggestive of the observations of Cho and Lazarian (2003) in
compressible MHD turbulence at high R,,. Cases with low
Ry, did not seem to exhibit this increase of anisotropy with
decreasing scale, but a more careful analysis for our results is
needed in order to establish a possible Reynolds number de-
pendence. Both cases correspond to M = 2, that is the time
scale associated with the mean shear is twice as large as the
time scale associated with the diffusion of the magnetic field.
Yet, in both cases, dy1(k) =~ O for the entire range of wave
numbers over which results are meaningful. Thus at these rela-
tively high R;,, the mean shear seems to determine the overall
structural anisotropy when the two time scales are compara-
ble. Because of the limited size of the computational box, we
were unable to adequately answer the question of anisotropy
at small scales. We plan to carry a series of 5123 simulations
in order to address that question more thoroughly. We also
hope that these higher-resolution simulations will allow us to
clarify the slight increase of anisotropy that was observed in
the cases discussed above.

6. CONCLUSIONS AND FUTURE PLANS

We have used direct numerical simulations to examine the
structure of homogeneous MHD turbulence subjected to mean
shear in fixed and rotating frames. We have found that the

most interesting dynamics is observed when the time scale of
the mean shear is comparable to that of the applied magnetic
field. In this regime, the magnetic field and the mean shear
exert competing influences on the structure of the turbulence
and relatively small variations in the governing parameters
seem to lead to markedly different evolving states. Counter to
intuition we have found that the combined action of a span-
wise mean magnetic field and spanwise frame rotation can lead
to enhanced streamwise alignment of the turbulence struc-
tures. We have also found evidence that, at moderate mag-
netic Reynolds numbers, a week scale-dependenceof structural
anisotropy exists, with smaller structures being more evidently
anisotropic than larger ones.

We hope this work will lead to an improved fundamental
understanding of the combined effects of mean shear, frame
rotation and magnetic fields on MHD turbulence. We plan
to use this understanding for the development of improved
structure-based models of MHD shear turbulence. A deeper
understanding of the mechanisms that lead to instability and
anisotropy in these flows is also important in the study of
accretion in stellar disks and in engineering applications such
as magnetogasdynamics.
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