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ABSTRACT

DNS of a turbulent channel flow has been carried out at four
Reynolds numbers, 180, 395, 640 and 1020, based on the fric-
tion velocity and the channel half width in order to investigate
the Reynolds-number dependenceon the pressure fluctuations.
It is shown that large peaks appear in the streamwise spec-
tra of the wall pressure fluctuations at low wavenumbers for
the Reynolds numbers investigated. The origin of the peaks
is examined using the pressure splitting method such as the
rapid and slow parts. At higher Reynolds number, a closer
examination reveals that large-scale patterns of the instan-
taneous wall pressure fluctuations are essentially associated
with large-scale structures of the instantaneous rapid pressure
in the outer layer, which causes the noticeable peaks in the
wall pressure spectra at low wavenumbers.

INTRODUCTION

The behavior of pressure fluctuations in wall-bounded flows
is of great importance in the prediction of sound and noise, and
also in the construction of more reliable turbulence modeling.
Over the past several decades, a large amount of experimental
and theoretical works have been conducted, where its global
characteristics have been fairly well examined (see, for exam-
ple, Willmarth, 1975; Eckelmann, 1989).

On the other hand, owing to an evolution of numerical sim-
ulation technique, direct numerical simulation (DNS) enables
us to investigate three-dimensional behavior of pressure at
moderate Reynolds numbers. For example, Kim (1989) inves-
tigated the characteristics of pressure fluctuations in a turbu-
lent channel flow by performing DNS at Rer = u-§/v = 180,
where u, is the friction velocity, § the channel half width and
v the kinematic viscosity. He examined the behavior of the lin-
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ear and nonlinear terms in the Poisson equation, and showed
that the contribution of the slow part is substantially larger
than that of the rapid part except near the wall where the
two parts are almost the same magnitude. Also, he indicated
that there appears a peak in the streamwise power spectrum
of the rapid pressure, which persists throughout the channel.
Choi and Moin (1990) carried out DNS in a turbulent channel
flow at Rer = 180, and examined the behavior of the wall
pressure fluctuations where the scaling issue was intensively
discussed as compared with the existing experimental results.
They showed in the frequency power spectrum that the inner
scaling is appropriate for high frequencies, whereas the outer
scaling is suitable for low frequencies. Johansson et al. (1991)
used DNS database in a turbulent channel flow at Re; = 180,
and examined the near-wall turbulence structures with con-
ditional sampling techniques. They showed that an intense
localized high-pressure pattern is associated with the shear-
layer structure. Hu et al. (1999) investigated source of sound
radiation by performing DNS of turbulent Poiseuille and Cou-
ette flows with relatively large computational domains. They
showed the wavenumber-frequency spectra of all the sound
sources, and examined the contributions to the radiated sound
intensity. However, unlike the velocity and vorticity fluctua-
tions (Moser et al, 1999; del Alamo et al., 2004), DNS studies
of the pressure fluctuations have been limited at Re, < 400
where the Reynolds-number effects may hardly be discussed
because of the low Reynolds-number effects (Antonia and Kim,
1994).

In the present study, we use our DNS database of turbu-
lent channel flow at four Reynolds numbers, Re, = 180, 395,
640 and 1020 (Abe et al., 2004a). The wide range of the
Reynolds number enables us to evaluate the Reynolds-number
dependence on the pressure fluctuations. The purpose of the



Table 1: Domain size, grid points, spatial resolution and sampling time period.

Re- 180 305 640 1020
Lz X Ly X L, 12.86 x 23 x 6.45 12.85 x 25 x 6.45 12.85 x 28 x 6.40 12.86 X 25 x 6.45
LT x Ly x LT 2304 x 360 x 1152 5056 x 790 x 2528 8102 x 1280 x 4096 | 13056 x 2040 x 6528
Nz X Ny x N, 256 x 128 x 256 512 x 192 x 512 1024 x 256 x 1024 2048 x 448 x 1536
Az, AyT,AzT | 9.00,0.20 ~ 5.90,4.50 | 9.88,0.15 ~ 6.52,4.94 | 8.00,0.15 ~ 8.02,4.00 | 6.38,0.15 ~ 7.32,4.25
Ttm/La 49 50 14 20

present study is to report the Reynolds-number dependence
on the pressure fluctuations as described by root-mean-square
(rms) values, power spectra and instantaneous fields up to
Re; = 1020. Furthermore, the pressure splitting method such
as the rapid and slow parts is adopted at Rer = 1020 in order
to examine the global phenomena of the pressure at higher
Reynolds number.

NUMERICAL METHODOLOGY

The flow is assumed to be a fully developed turbulent
channel flow. It is driven by the streamwise mean pressure
gradient. For the time integration, a fractional step method is
adopted, and a semi-implicit time advancement is used. For
the viscous terms with wall-normal derivatives, the Crank-
Nicolson method is used. For the other terms, the second-
order Adams-Bashforth method is applied for Re, 180,
395 and 640, and the low storage third-order Runge-Kutta
method is for Re; = 1020. For the spatial discretization, the
finite difference method is adopted. The numerical scheme
with the fourth-order accuracy is applied in the streamwise
and spanwise directions, while the one with the second-order
is adopted in the wall-normal direction. Further detailed nu-
merical methodology and the validation of results can be found
in Kawamura et al. (1999) and Abe et al. (2001, 2004a).

The computational domain size (Lz X Ly X L), num-
ber of grid points (Nz X Ny X N.), spatial resolution
(Azt, Ay, Azt) and sampling time period (Tum/Lg) are
given in Table 1, where T' and w,, denote the sampling time
and the bulk mean velocity, respectively. A relatively large
domain size is employed in order to contain a few numbers
of large-scale structures. Also, statistical data have been
integrated in time as long as possible to discuss the low-
wavenumber behavior. Note that throughout the paper, the
variables u;, p and z; are the velocity, pressure and location,
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Figure 1: Root-mean-square value of the pressure fluctuations
for Re; = 180, 395, 640 and 1020: (a) inner scaling; (b) outer
scaling. —--— , Moser et al. (1999) at Re, = 590.
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respectively, where the subscript ¢ = 1, 2 and 3 indicates the
streamwise, wall-normal and spanwise directions. The super-
scripts + and = represent the normalization of wall units and
§, respectively, and a prime denotes the fluctuation to the
average value. The streamwise, wall-normal and spanwise ve-
locities, u, v, and w, and the corresponding locations, z, v,
and z, are also used interchangeably.

RESULTS AND DISCUSSION

The rms values of the pressure fluctuations, p/,, ., for
Re; = 180, 395, 640 and 1020 are normalized by the wall-
shear stress 7y, and are shown in Fig. 1. The DNS result of
Moser et al. (1999) at Rer = 590 is also included for com-
parison. In Fig. 1(a), the rms value increases significantly
with increasing Reynolds number in terms of y+ throughout
the channel, where the peak position is located at yt+ =~ 30
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Figure 2: Root-mean-square value of the pressure derivatives
normalized by Twur /v for Re, = 180, 395, 640 and 1020. —
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Figure 3: Near-wall limiting values of p'2, , and p’,;2,,, nor-
malized by 72 and (myu-/v)?, respectively, as a function of
the 2Reynolds m;mber: (a) g’zms; (b)2p’7i$m84 o, p'2 5 A,
plvlrm‘s; \ p/721‘ms; <, p/73rms; X, p/rms of Spalart (1988)-



independently of Rer. The peak position corresponds to the
location where the source terms in the Poisson equation show
the largest value (Kim, 1989). In Fig. 1(b), on the other
hand, the rms value is almost collapsed at y/d > 0.2 in terms
of y/8, suggesting the suitability of the outer scaling in the
outer layer.

Figure 2 shows three components of the rms pressure
derivatives, p’,i,,s, for the Reynolds numbers examined,
which are non-dimensionalized by inner variables, Twur/v.
For each Re., the pressure derivatives show anisotropic be-
havior in the viscous and buffer regions, whereas those show
isotropic behavior at y* > 80 where each component is almost
the same magnitude. The Reynolds-number effect is notice-
able in the viscous and buffer regions, while it is rather small in
the outer layer, which is very similar to the Reynolds-number
dependence on the vorticity fluctuations (Moser et al., 1999).

As shown in Figs. 1 and 2, the significant increases in
Drms and i, occur near the wall. One may wonder if
these increases show any specific functional dependence. To
examine this issue, the limiting values of the mean-square val-
ues of p'2,. . /72 and p’ 52,5/ (Twur /V)? are given in Fig. 3.
It is shown in Fig. 3 that the increasing rate for the limit-
ing value of p'2_ /72 is indeed significant for the Reynolds
numbers investigated, whereas that for the limiting value of
p’,izms (7—wu-r/u)2 seems to be rather saturated at Re, =
1020. Interestingly, the increasingrate for the limiting value of
p'2, /72 is almost proportional to the logarithmic function of
the Reynolds number, i.e. log(Re;), which is consistent with
the analyses of Bradshaw (1967) and Townsend (1976). Also,
comparing the present results with those of Spalart (1988), the
present results show much smaller values than those of Spalart
(1988), which must be due to the difference in the outer layers
between the channel and the boundary layer.

Figure 4 shows one-dimensional streamwise and spanwise
wavenumber spectra of the wall pressure fluctuations for
Re,; = 180, 395, 640 and 1020 nondimensionalized by inner
variables, 72v/ur, where the spectra are defined as

/ $(ka)dhy = / (k=)dkz = ' s
0 0

Note that ¢(ksz) and ¢(k-) the power spectra, and k; and k,
are the wavenumbers in the x and z directions, respectively.
In Fig. 4, the frequency spectrum measured by Nepomuceno
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Figure 4: One-dimensional wavenumber power spectra of the
wall pressure fluctuations for Re; = 180, 395, 640 and 1020
normalized by wall units: (a) streamwise; (b) spanwise. o ,
Nepomuceno and Lueptow (Re, = 751).
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and Lueptow (1997) at Re, = 751 is also plotted for compar-
ison, using Taylor’s hypothesis with a convection velocity of
0.72Up (Choi and Moin, 1990), where Uy is the freestream
velocity or channel centerline velocity. With this normal-
ization, it is shown in both the streamwise and spanwise
spectra that the power increases significantly with increas-
ing Reynolds number at low wavenumbers, whereas the power
does not increase appreciably with increasing Reynolds num-
ber at high wavenumbers, which agrees with the findings of
Choi and Moin (1990) in the spectral scaling argument. The
noticeable Reynolds-number effect at low wavenumbers cor-
responds to the significant increase in the rms value with
increasing Reynolds number. Also, in Fig. 4, no apparent
inertial sublayer appears for the Reynolds numbers examined.
Nevertheless, p'2,. . /72 shows the logarithmic functional de-
pendence with increasing Reynolds number (Fig. 3). Since
the logarithmic relation is derived from the assumption of the
k! range, there may exist another reason for the logarithmic
increase in p’2,,, /72 with Re,.

In Fig. 4(a), clear peaks appear at low wavenumbers in the
streamwise spectra for the Reynolds numbers examined, which
may be closely associated with the global characteristics of the
pressure. To see this behavior more clearly, the streamwise
spectra shown in Fig. 4(a) are again plotted in linear scales
at k;0 < 50, and are given in Fig. 5. Indeed, large peaks
appear at low wavenumbers, k;6 = 2.5 ~ 3.4, for the given
Reynolds numbers. The corresponding wavelengths are about
1.8 ~ 2.5§, which may suggest that the origin of the peak exist
in the outer layer.
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Figure 5: One-dimensional streamwise wavenumber power
spectra of the wall pressure fluctuations for Re; = 180, 395,
640 and 1020 normalized by 726 at kzd < 50.
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Figure 6: Streamwise wavenumber power spectra of the pres-
sure fluctuations for Re; = 1020 normalized by p/zmsé.



To examine the origin of the spectral peaks shown in Fig.
5, the streamwise wavenumber power spectra for Re, = 1020
at several y locations are normalized by p’Z,, 8, and are given
in Fig. 6, where the integration of the spectrum over the
whole wavenumbers corresponds to unity. In Fig. 6, the spec-
trum at the wall shows almost the same behavior as that at
yt = 30, indicating that the major contribution to the wall
pressure comes from the buffer region (Kim, 1989; Johans-
son et al., 1991). With increasing distance from the wall,
the power becomes more prominent at low wavenumbers, and
noticeable peaks appear at k;0 = 2.5 ~ 3.4 throughout the
channel, suggesting that there exists close association in the
low-wavenumber behavior between the inner and outer layers.

In the following, we use the pressure splitting method such
as the slow and rapid parts in order to investigate the global
phenomena of the pressure at Re; = 1020 in detail. Also, the
total pressure is obtained directly from computing the Poisson
equation to make thorough comparisons among the three types
of the pressure, although the total pressure obtained from the
Poisson equation does not show any noticeable difference to
the total pressure as shown in Figs. 1~ 6.

The total, slow and rapid pressure at Rer = 1020 is ob-
tained by computing the Poisson equation using the data set
of 50 consecutive instantaneous fields at a time interval of
Att ~ 3. The Poisson equations of the total (p;), slow (ps)
and rapid (pr) pressure are expressed as

+ +
vpt = 2w 0 @)
t ox*  Oxr’
7 i
out  out
VQ + — _ 7 ) _]7 3
Ps 89{:; oz} )
o't duat
Vipt = -2 S 4
P! o0 dy (4)

In Egs. (2)~(4), the Neumann boundary condition is em-
ployed at the wall. For the rapid pressure, the homoge-
nous boundary condition, dp; /8y*|w = 0, is used, whereas
for the total and slow pressure, the inhomogeneous bound-
ary conditions, 8p; /dy*|w = (1/Re:) - (82v+/8y*2) |w and
AT /Oy*|lw = (1/Rey) - (82v’+/8y*2) |w, are used. The
Stokes pressure (Mansour et al., 1988) is included in ps.
Figure 7 shows the rms values of the total, slow and rapid

pressure at Rer = 1020. Near the wall, the rms values of
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Figure 7: Root-mean-square value of the total, slow and rapid
pressure fluctuations for Re; = 1020 obtained from 50 instan-
taneous realizations with a time increment of AtT ~ 3. ——,
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the rapid and slow pressure are almost the same magnitude
at y+ < 10 where the linear and nonlinear interactions make
nearly the same contribution to the wall pressure. Also, the
contribution from the slow and rapid pressure to the total
pressure is about 70 percent, which agrees with the result of
Kim (1989) at Rer = 400. In the center of the channel, on
the other hand, the rms values of the total and slow pressure
are almost the same magnitude, and the contributions from
the rapid and slow pressure to the total pressure are about 40
and 95 percent, respectively.

The streamwise wavenumber power spectra of the total,
rapid and slow pressure at Re; = 1020 are given in Fig. 8. For
the slow pressure, the spectra show almost the same behavior
as those of the total pressure throughout the channel. Notably,
the similarity is very high in the channel center where the flow
reaches the isotropy state. For the rapid pressure, on the other
hand, the power decreases noticeably at intermediate and high
wavenumbers with increasing distance from the wall. In the
center of the channel, a clear peak appears at a low wavenum-
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Figure 8: One-dimensional streamwise wavenumber power
spectra of the rapid and slow pressure fluctuations for Re, =
1020 normalized by 7, and é obtained from 50 instantaneous
realizations with a time increment of Att = 3: (a) total; (b)
slow; (c) rapid.



ber, kz6 = 2.5, which is persistent throughout the channel.
The same trend also appears in the streamwise spectra of
the total pressure, which agrees with the spectral behavior
as shown in Fig. 6. This indeed suggests the close association
in the low-wavenumber behavior between the total and rapid
pressure. Hence, the origin of the peak in the streamwise spec-
tra of the wall pressure fluctuations is attributed to the large
peak in those of the rapid pressure in the outer layer.

Kim (1989) has already reported the persistent spectral
peak of the rapid pressure at Re; = 180, and indicated that
the peak wavenumber is k.6 = 1.5. His wavenumber is smaller
than that of the present study. We consider this difference to
be due to the different sampling time periods between the two
studies because longer time integration is required to obtain
static turbulence statistics related to large scales (del Alamo
and Jiménez, 2003; Abe et al, 2004b).

Contours of the instantaneous total, slow and rapid pres-
sure fluctuations for Re, = 1020 at the wall and in the channel
center are shown in Figs. 9 and 10. At the wall (Fig. 9), we
see a large number of positive and negative pressure fluctua-
tions for the each pressure, where dominant length scales are
almost the same size independently of the pressure type. In-
terestingly, large-scale patterns appear in the instantaneous
total and rapid pressure at Re; = 1020, which are elongated

6 x5 8 10 12

0
14

Figure 9: Contours of the instantaneous pressure fluctuations
for Re; = 1020 at the wall: (a) total; (b) slow; (c) rapid.
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in the z direction with a streamwise spacing of about 2.
The streamwise spacing agrees with the peak wavenumber as
shown in Fig. 5. In the center of the channel (Fig. 10), on the
other hand, the instantaneous rapid pressure shows the largest
scales among the three types of the pressure, which are elon-
gated in the z direction with a streamwise spacing of about
2§. A comparison between Fig. 9(c) and Fig. 10(c) shows
that the large-scale structures in the channel center occur at
almost the same locations as the large-scale patterns at the
wall, suggesting close relation between the two structures in
the instantaneous rapid pressure.

To examine this issue further, contours of the instantaneous
total, slow and rapid pressure fluctuations for Re, = 1020
in the  — y plane are given in Fig.11. Indeed, large-scale
structures of the instantaneous rapid pressure appear in the
outer layer, which are deep in the y direction and extend
to the near-wall region. This again indicates the close as-
sociation between the inner and outer-layer structures in the
rapid pressure. Hence, the large-scale patterns in the instanta-
neous wall pressure fluctuations are essentially associated with
the large-scale structures of the instantaneous rapid pressure
in the outer layer, which causes the noticeable peaks in the
streamwise spectra at low wavenumbers.

Interestingly, comparing the instantaneous slow and rapid

2 6 X 8 10 12

0 4

(©)

Figure 10: Contours of the instantaneous pressure fluctuations
for Rer = 1020 at y/é = 1: (a) total; (b) slow; (c) rapid.
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pressure, the instantaneous slow pressure shows shear-layer
structures near the wall, while the instantaneous rapid one
shows large-scale structures that do not show any inclination
to the wall (see Figs. 11(b) and 11(c)).

CONCLUSIONS

In the present study, DNS of a turbulent channel flow was
performed at four Reynolds numbers, Re, = 180, 395, 640
and 1020 to investigate the Reynolds-number dependence on
the pressure fluctuations. It was shown that the significant
increases in the rms value of p’ and p’,;,.,,, s occur near the wall.
Indeed, the increasing rate for the limiting value of p/,.,,, is
significant, and p’zms/ﬂ% is almost proportional to log(Re,)
for the Reynolds numbers examined.

It was shown in the streamwise spectra of the wall pres-
sure fluctuations that large peaks appear at low wavenumbers,
kyd = 2.5 ~ 3.4, for the Reynolds numbers investigated. The
origin of the peaks was examined using the pressure splitting
method such as the rapid and slow parts at Re; = 1020. A
closer examination revealed that large-scale patterns appear in
the instantaneous wall pressure fluctuations at Rer = 1020,
and they are essentially associated with large-scale structures
of the instantaneous rapid pressure in the outer layer, which
caused the noticeable peaks in the streamwise spectra of the
wall pressure fluctuations at low wavenumbers.
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Figure 11: Contours of the instantaneous pressure fluctuations
for Re; = 1020 in the z—y plane: (a) total; (b) slow; (c¢) rapid.

194

REFERENCES

Abe, H., Kawamura, H. and Matsuo, Y., 2001, “ Direct nu-
merical simulation of a fully developed turbulent channel flow
with respect to the Reynolds number dependence,” ASME J.
Fluids Eng., Vol. 123, pp. 382-393.

Abe, H., Kawamura, H. and Matsuo, Y., 2004a, “ Surface
heat-flux fluctuations in a turbulent channel flow up to Re, =
1020 with Pr = 0.025 and 0.71,” Int. J. Heat and Fluid Flow,
Vol. 25, pp. 404-419.

Abe, H., Kawamura, H. and Choi, H., 2004b, “ Very large-
scale structures and their effects on the wall shear-stress fluc-
tuations in a turbulent channel flow up to Re; = 640,” ASMFE
J. Fluids Eng., Vol. 126, pp. 835-843.

Antonia, R. A. and Kim, J., 1994, “ Low-Reynolds-number
effects on near-wall turbulence,” J. Fluid Mech., Vol. 276, pp.
61-80.

del Alamo7 J. C. and Jiménez, J., 2003, “ Spectra of the
very large anisotropic scales in turbulent channels,” Phys.
Fluids, Vol. 15, L41-144.

del Alamo7 J. C., Jiménez, J., Zandonade, P., and Moser,
R. D., 2004, “ Scaling of the energy spectra of turbulent chan-
nels,” J. Fluid. Mech., Vol. 500, pp. 135-144.

Bradshaw, P., 1967, “ Inactive’ motion and pressure fluc-
tuations in turbulent boundary layers,” J. Fluid Mech., Vol.
30, 241-258.

Choi, H. and Moin, P., 1990, “ On the space-time charac-
teristics of wall pressure fluctuations,” Phys. Fluids, Vol. A
2, pp- 1450-1460.

Eckelmann, H., 1989, “ A review of knowledge on pressure
fluctuations,” In: Near- Wall Turbulence, Kline, S. J. and Af-
gan, N. H., eds., Hemisphere, New York, pp. 328-347.

Hu, Z., Morfey, C. L., and Sandham, N. D., 2003, “ Sound
radiation in turbulent channel flows,” J. Fluid. Mech., Vol.
475, pp. 269-302.

Johansson, A. V., Alfredsson, P. H. and Kim, J., 1991,
Evolution and dynamics of shear-layer structures in near-wall
turbulence,” J. Fluid. Mech., Vol. 224, pp. 579-599.

Kawamura, H., Abe, H. and Matsuo, Y., 1999, “ DNS
of turbulent heat transfer in channel flow with respect to
Reynolds-number effect,” Int. J. Heat and Fluid Flow, Vol.
20, pp. 196-207.

Kim, J., 1989, “ On the structure of pressure fluctuations
in simulated turbulent channel flow,” J. Fluid. Mech., Vol.
205, pp. 421-451.

Mansour, N. N.; Kim. J. and Moin, P., 1988, “ Reynolds-
stress and dissipation-rate budgets in a turbulent channel
flow,” J. Fluid. Mech., Vol. 194, pp. 15-44.

Moser, R. D., Kim, J. and Mansour, N. N., 1999, ¢ Direct
numerical simulation of turbulent channel flow up to Re, =
590,” Phys. Fluids, Vol. 11, pp. 943-945.

Nepomuceno, H. G. and Lueptow, R. M., 1997, “ Pres-
sure and shear stress measurements at the wall in a turbulent
boundary layer on a cylinder,” Phys. Fluids, Vol. 9, pp. 2732-
2739.

Spalart, P. R., 1988, “ Direct simulation of a turbulent
boundary layer up to Ry = 1410,” J. Fluid. Mech., Vol. 187,
pp. 61-98.

Townsend, A. A., 1976, “ The structure of turbulent shear
flows,” 2nd edition, Cambridge University Press.

Willmarth, W. W., 1975, “ Pressure fluctuations beneath
turbulent boundary layers,” Ann. Rev. Fluid. Mech., Vol. 7,
pp. 13-88.





