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ABSTRACT

Direct Numerical Simulations of turbulent channel flow
with square bars on the bottom wall are discussed have been
carried out at different Reynolds numbers. The results tend to
confirm the inappropriateness of the roughness function as an
indication of the effect a particular roughness geometry exerts
on the flow. Distributions of turbulent intensities support the
improvement in global isotropy relative to a smooth—wall.

INTRODUCTION

Flows over rough surfaces are of interest in many practi-
cal applications, ranging from shipbuilding and aviation, the
flows over blades in different types of turbomachines and the
flows over vegetated surfaces in the atmospheric surface layer.
In all these cases, the Reynolds number is high and the rough-
ness is very small relative to the characteristic length of the
outer flow. Direct numerical simulations (Leonardi et al. 2003,
Ashrafian et al. 2004) and LES, (Cui et al. 2003) have been
carried out for only one Reynolds number and have not ad-
dressed the Reynolds number dependence. In the present
paper, we discuss direct numerical simulations of turbulent
channel flows with roughness on the lower wall at different
Reynolds numbers. The aim is to clarify how the near-wall
structures and statistics depend on the Reynolds number. If
the dependence is weak, DNS can be useful to understand the
physics of real turbulent rough flows. Moreover, DNS results
can be used to develop new sub-grid models or closures for
RANS.

We consider a fully developed turbulent channel flow with
square bars on the bottom wall. Two values (1, 9) for w/k (w is
the spacing between roughness elements and k is the roughness
height) are discussed. Periodic boundary conditions apply
in the streamwise (z1) and spanwise (z3) directions respec-
tively. DNSs have been carried out at Re = Uch/v = 4200,
10400 and 18000, U. is the centerline velocity, A the half—
width of the channel and v is the kinematic viscosity. For
the smooth—channel, h* = 180 and 380 for Re = 4200 and
10400 respectively. The computational box is 8h x 2.1h X 7wh
in x1,z2 and x3 respectively. The additional 0.1h increase in
the channel height is due to the cavity height where the square
elements are placed, (k = 0.1h). The plane of the crests is at
x2/h = —1. The flow rate has been kept constant in all simu-
lations. The flow can be assumed to be “fully rough” since k+
ranges from about 20 for w/k = 1 to about 160 for w/k = 9
at the larger Reynolds number.
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NUMERICAL PROCEDURE

The non-dimensional Navier-Stokes and continuity equa-
tions for incompressible flows are:
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where Re = (Uch/v) is the Reynolds number, h is the chan-
nel half-width, U, is the centreline velocity, v is the kinematic
viscosity, II is the pressure gradient required to maintain a con-
stant flow rate, U; is the component of the velocity vector in
the ¢ direction and P is the pressure. The Navier-Stokes equa-
tions have been discretized in an orthogonal coordinate system
using the staggered central second-order finite-difference ap-
proximation. Here, only the main features are recalled since
details of the numerical method can be found in Orlandi
(2000). The discretized system is advanced in time using a
fractional-step method with viscous terms treated implicitly
and convective terms explicitly. The large sparse matrix re-
sulting from the implicit terms is inverted by an approximate
factorisation technique. At each time step, the momentum
equations are advanced with the pressure at the previous step,
yielding an intermediate non-solenoidal velocity field. A scalar
quantity ® projects the non-solenoidal field onto a solenoidal
one. A hybrid low-storage third-order Runge-Kutta scheme
is used to advance the equations in time. The roughness
is treated by the efficient immersed boundary technique de-
scribed in detail by Fadlun et al. (2000). This approach allows
the solution of flows over complex geometries without the need
of computationally intensive body-fitted grids. It consists of
imposing U; = 0 on the body surface which does not neces-
sarily coincide with the grid. Another condition is required to
avoid that the geometry is described in a stepwise way. Fadlun
et al. (2000) showed that second-order accuracy is achieved by
evaluating the velocities at the closest point to the boundary
using a linear interpolation. This is consistent with the pres-
ence of a linear mean velocity profile very near the boundary
even for turbulent flows, albeit at the expense of clustering
more points near the body.

MEAN FLOW

For w/k = 1 separation occurs at the trailing edge of the
element and reattachment is on the opposite vertical wall
(Leonardi et al. 2003). The cavity is filled by a stable vor-
tex. For w/k = 9, the flow reattaches on the bottom wall.
As the next element is approached, the streamlines are tilted
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Figure 1: Normalised skin friction coefficient on the horizon-
tal walls of a roughness element for w/k = 1 and w/k = 9.
Symbols w/k = 9, lines w/k = 1. o, Re = 4200,
o ———— Re = 10400, & Re = 18000.

upward and a new separation region is formed. The skin
friction coefficient exhibits a peak at the leading edge for
both the geometries. Inside the cavity, the recirculation is
very weak for w/k = 1, more intense for w/k = 9 (fig.1).
By increasing the Reynolds number, for w/k = 1 the fric-
tional drag decreases on the roughness crests plane. Within
the cavity, the flow is so weak that appreciable effects can-
not be observed. For w/k = 9, as the Reynolds number is
increased, the reattachment on the bottom wall (first zero
crossing) moves towards the trailing edge and the recircula-
tion region becomes smaller; on the roughness crest plane at
higher Reynolds number, the separation (negative friction) is
more evident. The pressure along the walls is shown in figure 2
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Figure 2: Pressure along the walls for one roughness wave-
length (the coordinate s follows the walls of the cavity, the
origin is at the leading edge). Legend as in fig.1.

over one roughness wavelength. As expected, the dependence
on the Reynolds number is weaker than that for the frictional
drag. For w/k = 1, the pressure is very low. Integrating
the friction and pressure distribution along the wavelength
the viscous (C; = A~! f(;‘(Cf)ds) and form drag is obtained

(Pg =21 fo)‘(P)ﬁ - Zds, i is the normal to the surface). For
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Figure 3: Dependence of frictional and form drag on the
Reynolds number. o frictional drag, o form drag. Empty sym-
bols w/k = 9, filled w/k = 1.

w/k = 1, the viscous drag is the main contributor to the to-
tal drag, the form drag being negligible. The opposite occurs
for w/k = 9. By increasing the Reynolds number, the form
drag does not change much (for w/k = 9, it differs by about
5% from Re = 4200 to Re = 18000), while the viscous drag
decreases appreciably (for w/k = 1 it changes by about 50%
from Re = 4200 to Re = 18000). For w/k = 9, the viscous
drag is negligible with respect to the form drag. The total
drag and U, (= y/ P4 + C; ) are almost independent on the
Reynolds number. The opposite trend applies for w/k = 1
where both the total drag and U, change appreciably.
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Figure 4: Mean velocity in wall units, solid lines Kim et al.
Re; = 180 and Moser et al. Rer = 395. Symbols present
simulations: 4 smooth, Dw/k = 3; empty symbols Re = 4200,
filled Re = 10400. For the smooth channel, profiles on both
walls are shown; symbols are plotted every 4. Broken lines
present simulations for w/k = 1 and w/k = 9 —-— Re =
4200, ———— Re = 10400, Re = 10400.

Direct Numerical Simulations allow U, (= /7 where 7 =
P+ C_f) to be estimated reliably so that the mean velocity
profile can be normalised properly by wall variables. It is
usually assumed that the roughness affects the mean velocity
in the logarithmic region through a shift AUY, (roughness



function), such that
Ut =x"tmyt+Cc-avt, (2)

where C and k are constants and ”+” denotes normalization
by either U, or v/U,. Perry et al. (1969) showed that, for
w/k > 1, the roughness function depends on kt only, (k-type
roughness), i.e.

AUt =x71In kT + B. (3)

This has been corroborated here by running two simulations
for w/k = 3 at two different Re and k (Re = 4200, k = 0.2h
and Re = 10400, k = 0.1h) so as to have the same kT. Since
the mean velocity profiles in wall units overlap (figure 4), the
results do not depend on Re and on the blockage due to the
size of the elements (k/h). The independence of the results on
k/h, for a given k¥, allows numericists to use larger elements
and smaller Reynolds numbers with a lower computational
cost. The velocity profiles are shown up to the location (ymaz)
of the maximum streamwise velocity, which does not coincide
with the centreline but is shifted upward (Leonardi, Orlandi
& Antonia 2005). In the same figure, results for the smooth
channel at Re = 4200 and Re = 10400 are reported. There
is a good agreement with those by Kim et al. (1987) and
Moser et al. (1999). To gain further insight into the depen-
dence of AUt with kT, two sets of simulations have been
performed, w/k = 1 and w/k = 9 for Re = 4200,10400 and
18000. For w/k = 9, figure 3 shows that 7 (and therefore
U,) does not change. Usually, experimentalists determine the
origin in y by fitting the mean velocity data to (2) after as-
suming a value of k (usually 0.41). A more physical approach
was proposed by Jackson (1981), who identified the origin in
y with the centroid of the moment of forces acting on the el-
ements. Both methods give an origin which does not change
with the Reynolds number. The former gives an origin at
e/k = 0.9 from the roughness crest plane, the latter at about
€/k = 0.53. Here, the former assumption has been made to
compare results with experiments; more details of the varia-
tion of e/k with w/k can be found in Leonardi et al. (2003).
Even if Ur and €/k do not change with Reynolds number, the
downward shift of the velocity distribution for Re = 18000 is
larger than that for Re = 10400 and 4200 (fig.4). This is in
fact due to the increase of kt which is 80, 103 and 180 for
Re = 4200, 10400 and Re = 18000 respectively. The corre-
sponding values of AUt are 12.9, 13.5 and 14.8 respectively,
in agreement with equation 3 and B = 2.2. For these values of
kt we are in the fully rough regime (Bandyopadhyay 1987).
The value of B depends on w/k, but varies only slightly in the
range 3 < w/k < 9. In fact, for w/k = 7 Bakken & Krogstad
(2003) found experimentally a similar value of B (B = 1.9).
If we take y = § + €k, where g is the origin at the roughness
crests plane, eq.2 can be rewritten as

Ut =k71in ((§+ek)U,Re) +C — AUT . (4)
The roughness function is therefore,
AUt = Ut 4+ k7 n ((§ + ek)U,Re) + C . (5)

U™ varies slightly with Re (fig.5) then the roughness function
varies mainly because of the term x~!1n (§T + ekT) which is
very similar to eq.3. In addition to eq.3, eq.5 shows that the
dependence of AU7 on k is only associated with the introduc-
tion of the shift in origin e. If the y origin were at the roughness
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Figure 5: Mean velocity in wall units. The origin of g is at
the roughness crest plane. Broken lines present simulations for
w/k =9 —-— Re = 4200, ———— Re = 10400, -------- Re =
10400.

crest plane, i.e. ¢ = 0, the log-region would not have a slope
% = 0.41 and the roughness function would not depend on k+
even for w/k = 9 which is referred to as a ”k—type” roughness.
Then, the fact that the roughness function depends on k7 is
a consequence of how it is defined and, as such, does not have
physical meaning. To further validate eq.5 we carried out 3
simulations for w/k = 1, k/h = 0.1 and Re = 4200, 10400,
18000. This geometry is called ”d-type” roughness (Perry et
al. 1969) to indicate that AU does not depend on k*. Fig-
ure 4 shows that the velocity distributions for Re = 10400 and
Re = 18000 overlap, and that for Re = 4200 is only slightly
different. To a close approximation, AU does not depend on
kT; kTt is 20, 43 and 67 for Re = 4200, 10400 and 18000 re-
spectively. In this case, the origin in y is at the roughness crest
plane so that € = 0. In fact equation 5 with ¢ = 0 becomes
independent of kT. Even with the method of Jackson (1981),
the origin in y is very close to the crests. Since for w/k = 1
the main contributor to the total drag is the friction, which
acts on the roughness crest plane, the centroid of the moment
is at € = 0.05. From these results, the classifications ”d-type”
and ”k-type” roughness are only for to the different origins in
y taken for the two types of geometries. The roughness func-
tion does not seem to represent a physical quantity which can
describe the roughness. It is rather a mathematical quantity
and its dependence on k£t appears to be a consequence of how
AUT is defined. To classify the large variety of rough walls
we would need a more physical quantity than AUT. Some
work has been done in this direction. Suggestions have been
made based on either the AIM (Smalley et al. 2002) or the
wall-normal turbulent intensity Orlandi et al. (2003).

TURBULENT INTENSITIES

Turbulent intensities in wall units are shown in figure 6-8
for w/k = 9. The smooth wall distributions, included as ref-
erence, agree reasonably well with those by Kim et al. (1987)
and Moser et al. (1999). Here, only the portion above the
crest plane (z2/h = —1) is shown. Despite an increase in (u?)
(fig.7), (u?)7T is largely reduced consistently with the DNS by
Bhaganagar, Kim & Coleman (2004) of a turbulent channel
flow with 3D roughness on one wall. As expected, (v2)¥ is
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Figure 6: Turbulent intensities in wall units. Smooth channel:
Kim et al. (1987), Moser et al. (1999), symbols present

simulations. Empty symbols Re = 4200, filled Re = 10400.
Roughness w/k = 9, —-— Re = 4200, ———— Re = 10400,
-------- Re = 18000.

larger than over a smooth wall and even far from the wall its
value is about twice that of a smooth wall. The normal wall ve-
locity is the quantity most affected by the rough wall. Orlandi
et al. (2003) showed that the salient characteristic of rough
wall flows is the presence of a non-zero wall-normal normal
velocity distribution at the interface between the roughness
cavities and the external flow. Near the wall (w2)1 increases
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Figure 7: Turbulent intensity of the streamwise velocity. Sym-
bols, smooth channel present simulation. Empty symbols
Re = 4200, filled Re = 10400. Top w/k = 1, bottom w/k = 9;
—-— Re = 4200, ———- Re = 10400, Re = 18000.

with respect to the smooth wall at low Reynolds number
(Rer = 180) but decreases with respect to the smooth chan-
nel at Rer = 380. Far from the wall, at about x2/h = —0.4
(6k above the roughness crests plane) (w?)% is larger than
that relative to the smooth wall at both Reynolds numbers.
With respect to the smooth wall, peaks of all the turbulent
intensities are shifted towards the roughness crest plane. The
dependence of the turbulent intensities for w/k = 9 on the
Reynolds number is weak. Regardless of the differences in
kt and AUT turbulent intensities agree closely throughout
the channel. In particular, the distributions for Re = 10400
and 18000 overlap, while those for Re = 4200 near the wall
are slightly different. Hanjalic & Launder (1972) performed
an experiment at higher Reynolds numbers in a channel with
square bar roughness. In agreement with the present results,
they found that the turbulent intensities, scaled in wall units,
do not depend on the Reynolds number. The same turbulent
intensities correspond to 3 different roughness functions, which
may be interpreted as further evidence for the inadequacy of
AUT in characterizing the effect of the roughness. The distri-
butions of all the turbulent intensities never overlap those for
the smooth channel even at the centreline, which is 10k above
the roughness crest plane. The largest differences are found, as
expected, for the wall-normal turbulent intensity. In the light



of the present findings the results obtained by Krogstad and
Antonia (1999) are not surprising. The authors considered two
different rough surfaces with the same roughness function and
found significant differences in (v?) in the outer layer. Since
the roughness function is not a physical meaningful signature
of the particular geometry considered, differences between the
turbulent intensities are expected. The fact that these differ-
ences extend even into the outer layer seems to be confirmed by
the present simulations given that at a distance of 10k above
the roughness crest plane, (v2)1 is about twice than that on
a smooth wall. However, we are aware that our ratio h/k may
be too small, and a further validation is required with smaller
roughness elements (Jimenez 2004).

For smaller values of w/k, the frictional drag increases its
importance respect to the form drag. A larger Reynolds num-
ber dependence is expected, and in fact, close to the wall, the
turbulent intensities vary more than for w/k = 9 (fig. 8). The
distributions are similar to those for w/k = 9, but the turbu-
lent intensities are closer to those of the smooth channel. In
particular, (u2)* at about z2/h = —0.2 coincides with that of
the smooth channel and the wall-normal turbulent intensities
at the centreline is only 50% larger than that of the smooth
channel. However, small perturbations, such as those caused
by the square cavities, produce differences in turbulent intensi-
ties which extend to more than 10k above the roughness crest
plane.

Since relative to a smooth channel, (u2)T decreases and
(v2)* increases, it can be concluded that roughness leads to
an improved global isotropy independently of the Reynolds
number.

CONCLUSIONS

Direct Numerical Simulations of turbulent channel flows
with roughness on the bottom wall have been performed for
w/k = 1 and 9 at three different Reynolds numbers. The effect
of the Reynolds number is weak especially for w/k = 9 where
the form drag is dominant. This provides strong motivation
for using DNS data at only moderate Reynolds numbers (say
Re ~ 10.000) to shed light into flows over rough walls. It has
been shown that the roughness function, to a large extent, re-
flect the choice of origin for y. For w/k = 1, the roughness
function does not depend on k%t because the origin is at the
roughness crest plane. For w/k = 9, the turbulent intensities
for 3 different values of AUY (corresponding to 3 Reynolds
numbers) are in reasonable agreement with each other. This
result highlights the inadequacy of using AU for character-
izing the effect of the roughness.

Relative to a smooth wall, the roughness considered here re-
sults in an improvement in the level of isotropy independently
of the Reynolds number.
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