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ABSTRACT

Several attempts have been made in the literature to im-
prove the ability of statistical models to predict turbulent
compressible flows. As yet, it is not possible to accurately
predict both free and wall-bounded flows with the same model
under a variety of conditions. One drawback in these attempts
has been the lack of sufficiently reliable data with which to
assess the various terms arising in the turbulent transport
equations. In this study, the exact terms of the solenoidal
dissipation rate equation are calculated for the first time in
both a compressible channel flow and a turbulent mixing layer.
This data is then used to assess both the exact and modeled
form of this equation. In its exact form, explicit compressibil-
ity terms appear. In addition, the terms that also appear in
the incompressible equation now may vary differently under
increased compressibility conditions. This latter effect can be
either an indirect one, that is compressibility modifies mean
quantities and Reynolds stresses, or a direct one, that is the
processes in the solenoidal dissipation rate equation are them-
selves modified by compressibility. In order to separate the
indirect and direct effects, it is assumed that the processes in
the solenoidal dissipation rate equation are properly described
by the available incompressible functional forms. The model
coefficients are then determined by a priori tests. The direct
effects appear if the coefficients depend on compressibility, and
these effects have to be modeled additionally.

EXACT AND MODELED FORM OF THE SOLENOIDAL DIS-
SIPATION RATE EQUATION

It has been shown (e.g. Sinha and Candler, 2003) that the
solenoidal dissipation rate € can be well approximated by the
form e = pwjw], where wiw/ is twice the enstrophy. Although
its transport equation has been given previously, it is written
here for completeness and in order to contrast some details
with previous studies:
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are the turbulent transport and viscous diffusion. The remain-
ing terms constitute the explicit compressibility contributions.
These include

TS = D(u;j—u;’i)u;ju;’k (2h)

which is the compressible turbulent transport,

B = 2‘7('“;’]‘ - ’U‘;'_’i)P,jp,i/PQ (21)
and
Feo= =20} ; —u} )P, ik k/ P (2j)

which are the contributions due to the component of the force
on a volume element that is normal to the density gradient.
The baroclinic term Be is due to the force exerted by the
pressure gradient, F: is due to the force resulting from the
viscous stress gradient. The last term on the RHS of Eq. (1)
requires no modeling and is simply the variation of the mean



kinematic viscosity. In the cases to be examined here, this
term can be neglected.

It should be noted that the partitioning used here con-
trasts with that used by Sinha and Candler (2003). Their
partitioning of terms originating from the viscous term in the
momentum equation differs from the one used here. They ob-
tained a viscous diffusion term, DS&C a viscous dissipation
term, YES&C, and a viscosity variation term, CES&C, that can
be written as
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Y5&C and D5%C are the terms that appear in the case of in-
compressible flow with no property variation, and all effects of
compressibility and property variation are contained in CE&C‘
This makes the term C5%C difficult to interpret. For exam-
ple, in supersonic channel flow at M = 3.1 (see Table I Case
K6000n), C: and D, are in balance at the wall, and each have
high values that reach three times the maximum of the de-
struction Y. The terms used in the present study are well
behaved even in regions of high viscosity gradients. In the
limit of incompressible flow, with no mean property variations
both formulations are equivalent, that is Fz — 0, CES&C — 0,
T — YS%C and D, — DZ¥C,

Models are needed to close the production, destruction and
transport terms in Eq. (1). These are given by:
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where Cy, is defined by —ujuf = Cu(K2/e)U; ;. The models
for Eqs. (4) and (5) were originally proposed by Hanjalié
and Launder (1972), and the model for P3 was developed
by Rodi and Mansour (1993). The turbulent transport T: is
modeled by a gradient diffusion model with o = 1.3. All these
models were designed for incompressible flow and are adapted
here for compressible flow by introducing variable density and
viscosity, and Favre mean and fluctuation quantities. In the
partitioning used here, the viscous diffusion term D. is not
closed and it also has to be modeled.

The above models are used for a priori tests. From the DNS
simulations, each quantity in the above equations is known,
and the model coefficients Cel, C’g, C’13, C’S, ft and Cy can be
determined. These coefficients can be calculated, and com-
pressibility effects altering these quantities can be identified.
The cases of channel flow and mixing layer will be studied
separately. This will isolate the effects of compressibility in
wall bounded and free shear flows.

All the direct simulations are performed using a finite-
difference scheme for the primitive variables pressure, velocity
and entropy. Integration in time is done by a third order
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Flow Case | M = “®  Req = L’J:‘;”H
KMO03 0.350 2808.6
K3000 1.5327 2452.2
K6000n 3.1399 3204.0

Table 1: Parameters of the DNS of channel flow with cooled
walls. H is the channel half width, the subscript av denotes
values averaged over the whole flow domain, w wall values.

Runge-Kutta scheme. Two different spatial discretizations are
used: A fifth order compact upwind scheme in the case of
channel flows, and an optimized fourth order central compact
scheme plus filtering of the highest wavenumbers to stabilize
the simulations in the case of the mixing layer.

COMPRESSIBILITY EFFECTS AND THEIR MODELING

In order to properly compare terms and model coefficients
for the various Mach and Reynolds numbers, suitable scal-
ing parameters have to be found. For the turbulent channel
flow data analyzed here, Foysi et al. (2004) have success-
fully used u* = \/7w/p as a fluctuating velocity scale, and
/7w and H/um (uam = volume averaged mean velocity) as
the proper time scales for the near-wall and the core regions,
respectively. This allows for the scaling of all the terms in the
e-equation which can then be plotted against the semi-local
viscous coordinate z* = zpul /[ close to the wall, and against
z/H in the core region. In the mixing layer, one scaling is
sufficient throughout the flow, namely Au (velocity difference
across the layer) for the velocity fluctuations, and dg/Au for
the timescale (§p = momentum thickness). The relevant co-
ordinate there is the self-similar coordinate ¢ = z/dy.

CHANNEL FLOW

Channel flow simulations carried out by Foysi et al. (2004)
are used here. The three channel flows (see Table 1) cover a
substantial range of Mach numbers. The Reynolds number,
defined from mean quantities, Req varies little between cases.
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Figure 1: Production and destruction terms in the e-equation;
KMO03 (symbols), K3000 (lines & symbols) and K6000n (lines)

The main effect of increasing Mach number is to increase
the mean property variation in the range z* < 30. This region
is characterized by steep gradients of density and viscosity
close to the cooled wall. For the three Mach number cases
simulated, the wall density is 0.02, 0.37 and 1.54 times higher
than the mean density. This effect is proportional to M2. In
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Figure 2: Model coefficient C! and C2 variation across chan-
nel; KMO03 (symbols), K3000 (lines & symbols) and K6000n
(lines)
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Figure 3: Model coefficient Cf’ and C’g’ variation across chan-
nel; KMO03 (symbols), K3000 (lines & symbols) and K6000n
(lines)
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Figure 4: Model coefficient f; variation across channel; KM03
(symbols), K3000 (lines & symbols) and K6000n (lines)

addition, any differences in mean velocity between the differ-
ent cases are accounted for using the channel flow velocity
scalings.

The near-wall scaling collapses the positions of the peaks
of terms in the e-equation (1), but the amplitudes show a
monotonic decrease with increasing Mach number (Fig. 1).
Only the explicit compressibility terms 7, Be and F: increase
with Mach number, but they still remain negligible. At the
wall the viscous diffusion D. decreases with increasing Mach
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number. For z* > 30 no compressibility effect was seen. This
was also checked using an outer scaling for the center region
of the channel.

Plotted in inner variables, the profiles of the coefficients C'2
and C2 for the different Mach numbers collapse (see Fig. 2).
This indicates that no compressibility effects influence either
the production or destruction terms.

Unfortunately, evaluations of the models for PE3 and T: are
more difficult to interpret since these terms change sign across
the channel. Some progress can be made, however, by exam-
ining each term of the model separately (see Eq. (6)). Figure
3 shows that the second term is only important near the wall
(2* < 12). This is exemplified by the relatively constant val-
ues of both C’f and C’g’ (= 0.7 and 0.007, respectively) in their
respective regions of importance. Cf’ shows no dependence on
Mach number, CS’ is decreasing, but only slightly.

For the transport T:, there is a relatively good collapse of
the data for the model coefficient f; in the regions shown in
Fig. 4. In the near-wall region (z* < 12) and in the region
32 < z* < 42 (not shown), T. changes sign, so no meaningful
value of the coefficient can be obtained. If directly compared
to the exact term, the model works well except for a small
region in close proximity to the wall (Fig. 5). An improvement
of the model is possible, if the dependence on turbulent kinetic
energy is replaced by individual Reynolds stress components.

In incompressible flows, the viscous diffusion term D. is
modeled as (ve ;) ;. The incompressible model can be adapted
to a compressible one directly by introducing a variable den-
sity and viscosity. This leads to D. =~ (fi(pe) ;),;/p*. A more
general and more complex expression can be obtained from
De = 8%¢*/92*? which gives D: ~ [a(peq) i //Pl ; /(ﬂﬁ%).
The second formulation gives better results especially for high
Mach numbers; although the behavior directly at the wall
(2* < 3) still cannot be captured exactly (not shown).

MIXING LAYER

The parameter range covered by the mixing layer simu-
lation data is given in Table 2. From this database, it is
possible to investigate the effect of different Mach numbers
(M10 and M11) and mean property variation (M10 and M14).
The mean density difference in simulation M14 is the same as
in the channel flow simulation at M = 3.1, K6000n, and Rey
is the average Reynolds number over the time interval that
was used to average the data using self-similar normalization.



w AU
flow case | M. = C1A+UCQ p2/p1 Reg = "Tﬁ
M10 0.15 1 1072
M11 1.1 1 984
M14 0.197 2.7 941

Table 2: Parameters of the DNS of time dependent mixing
layers. The subscripts 1 and 2 denote the lower and the upper
stream, 09 the momentum thickness.

The box size and initial conditions are chosen as in the simu-
lations described by Pantano & Sarkar (2002), but the spatial
resolution is twice as fine to properly represent the dissipative
range of wave numbers.
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Figure 6: Production and destruction terms in the e-equation;
M10 (symbols), M11 (lines & symbols) and M14 (lines)
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Figure 7: Explicit compressibility terms in the e-equation;
M14

The mean velocity profiles are independent of Mach num-
ber. A density difference between the two streams causes the
center of the mixing layer, identified by the peak in K, to be
shifted by one momentum thickness into the low density region
as a result of mean momentum conservation and all profiles to
become asymmetric. In order to compare the flows, data from
M14 is always plotted over the shifted coordinate z/dg + 1.

In the balance of the dissipation rate, P} and P2 are not
affected by either Mach number or density difference. How-
ever, PE4 and —7Y vary under the different conditions, but their
sum does not change substantially (see Fig. 6). The turbulent
transport 7. was found to decrease with Mach number; how-
ever, the density difference causes it to rise at the low density
side, reflecting the shift of the mixing layer (see Fig. 10).

The compressible terms 7 and F: have positive nonzero
values at the center in the case with high Mach number (M11),
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Figure 9: C2; M10 (symbols), M11 (lines & symbols) and M14
(lines)
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Figure 10: T: and its model, f; = 0.5; M14

but they remain small compared to the other terms. The value
of the baroclinic term B is even smaller.

However, in the mixing layer case with a density difference
(M14), B: becomes as big as P! and has a similar shape.
The compressible transport acts to redistribute the effects of
dissipation from the high to the low density side. The term F:
is somewhat smaller and has an opposite effect (Fig. 7). Be
has to be modeled (see below), while the summed contribution
of Fr and T¢ still can be neglected.

The a priori tests using the mixing layer data can only give
reasonable values for model coefficients in the inner part of the
mixing layer, because at the edges both the exact terms and



the modeled terms are much too small for meaningful com-
parisons. In the inner part of the mixing layer (—3 < z* < 3),
Fig.8 shows that C’g1 is nearly independent of compressibility
effects. There, the mean values and standard deviations are
0.66+0.05, 0.72+0.06 and 0.59+0.06 for M10, M11 and M14.
The value of C2 shows more irregularity, but the mean values
of 1.11 £0.22, 1.20 £ 0.09 and 1.23 £ 0.39 for M10, M11 and
M14 are close together.

Once again, the model for the turbulent transport term and
the associated model coefficient are difficult to evaluate since
T: changes sign within the layer. It is more instructive to
compare model and exact term directly. (Due to oscillations
resulting from the evaluation of the terms in the model, a box
filter with filter-width §y was used to smooth the profiles.) For
all flow cases the agreement between model and exact term is
good, if f; = 0.5. For example, the M14 case in Fig. 10 shows
very good agreement across the layer.

Since the terms P3 and D. are negligible in the mixing

€
layer, models for these terms are not tested.

MODELING OF THE BAROCLINIC TERM

The model for B; should fulfill the following conditions: (i)
it should act as a source in the equation — it is only negative
in situations where it is negligible; (ii) since it is only relevant
in situations with mean density gradients, the model should
include this factor; (iii) it should either scale as the other terms
in the dissipation rate balance or vanish for infinite Reynolds
number — otherwise no self-similar solution is possible. The
model assumptions are checked using data from the mixing
layer case M14.

At the outset, it has to be determined which correla-
tion appearing in the term B. = 217(u;7j — u;ﬂ,)pdvp’i/p2
= —20@’ o (Vp X Vp)/p? has to be modeled. A first step is
to separate the division by the squared density from the term:

@ o (VpxVp)/p> = & o(VpxVp)/p’
- o p\"
+ @' o (Vp X Vp) - (—QT — _—) 8)
; P p? (

It can be shown from the DNS data, that the correlations
with density fluctuations do not contribute substantially to
the term.

Following Krishnamurty & Shyy (1997), the correlation in
the first term on the RHS of Eq.(8) can be split into

@ o(VpxVp) = &o(Vp xVp)
—_—

Terml

+@ o (VP X Vo) +& o (VP X Vo) .(9)

Term?2 Term3

They concluded from an order of magnitude analysis, that the
second term is the dominant one. However, the present DNS
data leads to another conclusion, namely that the triple corre-
lation (T'erm3) dominates. It is not possible then to simplify
and model only the second-order terms.

The modeling approach is to represent the scalar and vector
products by rms-values and a correlation coefficient:

@' o (VpxVp) = & o(VpxVp)
~ C- w;"ms : (Vp X Vp);‘ms ) (10)
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(VP X Vp);‘ms ~ CPP -Vp ;‘ms -Vp ;‘ms . (11)

In this approach only w.,. = +/&/V is closed. Vp/,..,
Vplms and the coefficients C' and Cp, have to be modeled.
It is assumed that the hydrodynamic pressure fluctua-
tions pl.,,,, ~ pg? are the relevant ones ! . Acoustic fluc-
tuations are assumed not to contribute to the baroclinic
term, since in a sound wave density gradients are paral-
lel to pressure gradients. To get an estimate for the gra-
dient, the relevant length scale has to be chosen. Using
the assumption of an inertial range, Batchelor (1951) esti-

mated the fluctuating pressure gradient as 1.17Rel% g%/l =
1.17p¢%/VIX. In a later work, George et al. (1984) di-
vided the fluctuating pressure gradient into a mean field—
turbulence interaction part that dominates in the case of small
Reynolds number, and a turbulence-turbulence interaction
part. The first was modeled as 1.465* pg? /1, and the second as

1/ 1.30R6;/2 — 50.83 pg? /1. For infinite Reynolds number, the

1
model becomes 1.14Re;* pq? /1, which is similar to Batchelor’s
estimate. According to these theoretical findings the model
for Vp}.,,s has the form

2 3/4
/ ~ Pq” PE
Vprms ~ CP : m - CZ’ . 51/ (12)

The density fluctuations are estimated by a mixing length
model. Since the mixing is affected by both the large and small
scale structures, an intermediate length scale between the in-
tegral scale and the Taylor microscale would be appropriate.
As the length scale for the gradient, the Taylor microscale is
chosen, similar to velocity gradients.

5 4
e T~ RANE

ve

VPhms = Cp

rms

Combining the results from Eqgs. (10) to (13) yields the model
V5

B. ~ 204, (M) ¢ (14)
p

It can immediately be seen that B. is proportional to the
mean density gradient as required by condition (ii). Since in
the mixing layer e ~ AU3/8g, ¢ ~ AU and Vp ~ p/dg, the
complete model scales like AU4/6§4 This is the same scaling
as the models for production, destruction and turbulent trans-
port, so condition (iii) is fulfilled. It remains to determine the
sign of the closure coefficient Cp, to insure condition (i) is
met.

The assumptions associated with Eqgs. (10) to (13) can be
validated, and the model coefficients calibrated for the mixing
layer M14 data. The a priori evaluation of the model given in
Eq. (10) between w’ and (Vp x Vp)' yields a value for C. Fig-
ure 11 shows the distribution across the layer. Its mean value
for —3 < z* < 3 is -0.07. Additionally, Eqs. (12) and (13)
yield values for Cp and C, of 3.1 and 1.2, respectively. The
value for C} is roughly 2.5 times higher than the value pre-
dicted by Batchelor (1951) for high Reynolds number isotropic
turbulence.

Writing the vector product in Eq. (11) in terms of the
magnitude of the vectors and the angle ¢ between them gives

2 N
(VD x Vo) s = (VPIIVP [sind)? = Cp, VP2 V2. (15)
1Here Re; = %,Re,\ = %,l: é’)\: ”22,q=\/2K

and S* = % are used, where S is the mean velocity gradient.
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Figure 11: Model constant C (eq. (10))

If it is assumed, that both the direction and magnitude of the
gradients of pressure and density are uncorrelated, the above
equation simplifies to
N )
sin?¢ = Cp, . (16)

The pdf f(1) of ¢ needed to determine the value of Cp, is
%simﬁ under these assumptions 2. So

Cpp = \/ / "2 sinsin? W ~ 0816 (17)
0

This value slightly over-predicts the term in the mixing layer,
but is close to the value of 0.7 determined from an a priori
evaluation of the term. The assumption of independence of
the gradients is not perfect, but does give a good estimate.

The comparison between the exact term Be and its model
using Cg, = 0.18 (=~ 0.07-0.7-3.1-1.2) shows, that the model
works well (see Fig. 7). Only the shift of the term into the low
density region, in addition to the shift of the whole layer, is
not correctly predicted since C is taken as constant (although
it is rising towards the low density region, Fig. 11).

SUMMARY

An examination of terms in the solenoidal dissipation rate
equation (1) shows added contributions from explicit com-
pressibility terms in addition to terms that also appear in
incompressible flows. A new partitioning of these terms facil-
itates the identification of compressibility effects in the devel-
opment of closure models for the new explicit compressibility
terms as well as the standard terms appearing in both the
incompressible and compressible formulations. The a priori
analysis using DNS databases presented here leads to the fol-
lowing conclusions:

20nly the directions of the gradients, two independent unit
vectors, are considered. If the first vector is regarded as one axis
of a sphere of radius R = 1, the second vector points from the
center of the sphere to a point on its surface, and on each point
with the same probability. Now the probability of ¢ < ¥ equals
the ratio between the segment of the surface of the sphere with
¢ < 1 and the whole surface of the sphere

2
P = Plo <) = ZREZ 0D _ 1 cos(y)
TR 2

So the probability density function is
dF(y) _ 1

F) = T2 = Sin(w).

158

(i) Near cooled walls strong mean property variations are in-
duced. The terms in the transport equation of solenoidal
dissipation rate are in most cases reduced by compress-
ibility.

The tests show that the coefficients in the modeled terms
of the solenoidal dissipation rate equation are indepen-
dent of Mach number and mean property variation. It
can be concluded that the compressibility effects in the
transport equation for € are of indirect nature. This is
reasonable, because compressibility effects should be pro-
portional to the turbulent Mach number M; = u/c and
the gradient Mach number My = Sl/c. Both parame-
ters are related to large structures, and the small struc-
tures relevant for dissipation, scale with the Kolmogorov
scales. Both the Kolmogorov length scale n and velocity
scale uy, are very small, so the corresponding Mach num-
bers are close to zero and no direct compressibility effects
are expected. Provided good incompressible models are
available for all terms, their adapted forms will also be
good models for compressible computations.

The argument of the relevant Mach numbers used above
can also explain why the explicit compressibility terms
are negligibly small in most cases. In the only flow where
these terms are of non-negligible size, the mixing layer
with high mean property variation, this is not caused by
high Mach number, but by low Mach number mixing of
fluid of different density. For the baroclinic term B. a
model is proposed. The other two terms, Fr and T7, are
not modeled, because their combined contribution can
be neglected.

(iii)

Even though these results are relevant to a wide variety of
flows, the conclusions are not universal. They have been
obtained for compressible flows without shocks and without
relevant changes of density or viscosity along a mean flow
streamline. In flows where these phenomena appear, addi-
tional effects may arise.
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