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ABSTRACT

An exact expression for the Reynolds stress was derived
using the Green's function for the velocity fluctuation. The
nonlocal eddy viscosity involved in the expression
represents a contribution to the Reynolds stress from the
mean velocity gradient at remote points in space and time. A
direct numerical simulation of channel flow was carried out
to validate the nonlocal expression. The transport equations
for the velocity and the Green's function were calculated to
evaluate the nonlocal eddy viscosity; it was shown that the
nonlocal expression is accurate for both the normal and
shear stresses. A local expression for the shear stress was
also evaluated to show that the local approximation is not
accurate enough near the wall. The nonlocal eddy viscosity
for rotating channel has wider profiles than that for non-
rotating channel. The analysis by the nonlocal expression
was shown to be useful for a better understanding of
turbulent shear flow.

INTRODUCTION

The eddy viscosity and diffusivity approximations are
widely used to predict the mean velocity and scalar fields in
turbulent flows, respectively. In the eddy viscosity model the
deviatoric part of the Reynolds stress at a point is assumed
to be proportional to the strain rate of the mean velocity at
the same point. This local approximation is not always valid
for actual turbulent flows. Its limitation was pointed out; a
gradient transport model requires that the characteristic scale
of the transport mechanism be small compared with the
distance over which the mean gradient of the transported
property changes appreciably (Corrsin 1974). In turbulent
flows the length scale of turbulence is often as large as that
of the mean field variation. One of typical examples is the
scalar transport in the atmospheric boundary layer;
convective eddies driven by buoyancy are as large as the
boundary layer height, and the eddy diffusivity model is not
always accurate. To develop nonlocal models for the scalar
transport, Stull (1984) proposed the transilient turbulence
theory that describes the nonlocal transport using a matrix of
mixing coefficients. Berkowicz and Prahm (1980)
generalized the eddy diffusivity; that is, the scalar flux is
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expressed as a spatial integral of the scalar gradient. In
contrast to the eddy diffusivity model, few nonlocal models
were examined for the eddy viscosity. As one of few
examples, Nakayama and Vengadesan (1993) proposed a
nonlocal eddy viscosity model in engineering problems.

In addition to the application of nonlocal models, the
nonlocal expression was also investigated theoretically.
Using the Green's function, Kraichnan (1987) derived exact
nonlocal expressions for the Reynolds stress and the scalar
flux. However, his expressions involve the Reynolds stress
or the scalar flux also on the right-hand side; they need to be
solved iteratively. Hamba (1995,2004) modified the Green's
function to obtain an explicit exact expression for the scalar
flux; the Green's function was calculated in the large eddy
simulation of the atmospheric boundary layer and the direct
numerical simulation (DNS) of channel flow to evaluate the
nonlocal eddy diffusivity.

In this work we extend this nonlocal analysis to the
Reynolds stress to investigate the nonlocal properties of the
momentum transport. An exact explicit expression for the
Reynolds stress is derived using the modified Green's
function for the velocity fluctuation. As a basic example of
turbulent shear flow we carry out a DNS of channel flow
without and with system rotation. The transport equation for
the Green's function is calculated to evaluate the nonlocal
eddy viscosity. We examine nonlocal properties of the
Reynolds stress in turbulent channel flow.

FORMULATION

In order to solve the mean velocity equation it is necessary
to model the Reynolds stress. In the nonlinear eddy-viscosity
model the Reynolds stress is approximated by
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Here, () denotes ensemble averaging, U,(=(u;)) is the



mean velocity, u/

[ is the velocity fluctuation, and §; is
the Kronecker delta symbol; the summation convention is
used for repeated indices. The first term involving v, on
the right-hand side is the eddy viscosity representation; this
approximation has been widely used. The second term
involving v{” is one of the nonlinear eddy-viscosity terms
introduced to improve the eddy viscosity model. The above

expression can be rewritten as
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where Vpy,, is the anisotropic eddy-viscosity tensor that
can explicitly depend on the mean velocity gradient. This
eddy viscosity model is local in space in the sense that the
Reynolds stress at a point is expressed in terms of physical
quantities at the same point. This local approximation is
valid only if the turbulence length scale is much less than the
length scale of the mean velocity variation. However, this
condition is not always satisfied in actual turbulent flows.

For the scalar transport Hamba (1995) introduced a
modified Green's function for the scalar fluctuation to derive
an explicit exact expression for the scalar flux. In the present
work, we apply this formalism to the Reynolds stress to
derive its explicit nonlocal expression. We consider the
equations for the velocity fluctuation
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We introduce a modified Green's function gMij(x,t;x',t’) ; its
equations are given by
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where pg is a vector that plays a similar role to the
pressure and guarantees the solenoidal condition (6)
for gyy; - Using this Green's function a formal solution for the
velocity fluctuation can be written as
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Here, a term involving the initial value u/(x,0) is omitted
because it does not contribute to the Reynolds stress for
sufficiently large t. This solution leads to the nonlocal
expression for the Reynolds stress given by
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where

VNLijkm (X7 t; le t,) = ((u;(xa t)gMjk (X’ t;X,’ t,)u:n (X’v t’»
(X, gy (X, 6X, 1)), (X,t)) /2 (9)

Therefore, the Reynolds stress can be expressed as a space
and time integral of the mean velocity gradient.

The nonlocal eddy viscosity VNLijm(x,t;x’,t’) involved
in (8) represents the contribution to the Reynolds stress at
(x,t) from the mean velocity gradient at (x’,t"). It is
expected to have a nonzero value if the distance Ix—x’I
and the time difference t—t’ are compatible with or less
than the turbulence length and time scales, respectively. If in
this region in space and time the mean velocity gradient
dU, /0x,, is nearly constant, the Reynolds stress can be
approximated by
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where V., is the local eddy viscosity given by
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Therefore, whether the local approximation is good or not
depends on the relation in the length and time scales
between profiles of v, and JU, /ox, .

In the next section we will evaluate the nonlocal eddy
viscosity by carrying out a DNS of channel flow. It takes
very ~much computing cost to calculate g
straightforwardly because it depends on x” and t’. In this
work, making use of the streamwise and spanwise
homogeneities and the stationarity of channel flow, we
evaluate the nonlocal eddy viscosity as follows. Since
U(x’,t") depends only on y’ in channel flow, the integral
with respect to x”, z’,and t’ applies only to gu; in
(7). We define another Green's function as
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where indices j=1 and 2 correspond to the streamwise and
wall-normal components, respectively. Using this Green's
function the Reynolds stress given by Eq. (8) can be
rewritten as
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Figure 1. Mean velocity profiles.
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For channel flow the nonlocal expressions (8) and (9) are
equivalent to Eqgs. (15) and (16). Since the Green's
function g,,(x,t;y") depends only on y’ as the source
point, it is not very hard to calculate its time development.
Like Eq. (10) the local approximation can be written as
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where Vy;,(y) is the local eddy viscosity given by
Vi () = de/VNLijlz(y;y/) (18)

Comparison of Eqs. (17) and (18) with Eq. (15) shows
that if dU/dy” is nearly constant in the region where
Vi (V;¥)# 0, the local approximation (17) should be
good.

RESULTS AND DISCUSSION

In this section we show the result of a DNS of channel
flow. Using DNS data we examine whether the nonlocal
expression (15) is exact. In the DNS we numerically solve
the equations for the velocity given by
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Equations (13) and (14) are also solved for the Green's
function G, . The variables x,(=x), Xx,(=y), and
X;(=z) denote the coordinates in the streamwise, wall-
normal, and spanwise directions, respectively; corresponding
velocity components are given by u,(=u), u,(=v), and
u,(=w). Hereafter, all quantities are nondimensionalized
by the wall-friction velocity u, and the channel half width
L, unless otherwise mentioned. The Reynolds number
basedon u, and L /2 issetto Re =180 .The size of
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Figure 2. Profiles of nonlocal eddy viscosity Vi -

the computational domain is L XL XL, 6 =64%x2X3.2.
A staggered grid is adopted; it is uniform in the x and z
directions and is stretched in the y direction using a
hyperbolic tangent function. The number of grid points is
N, XN XN, =128x96x128 . The periodic boundary
conditions for u, and g;,, are used in the x and z
directions. No-slip conditions u; =g,, =0 are imposed at
the walls ( y=%1 ). We use the second-order finite-
difference scheme in space and the Adams-Bashforth
method for time marching. The computational time step is
At=5x10"". The computation was run for a sufficiently
long time to be statistically independent of the initial
condition; then statistics such as the Reynolds stress were
accumulated over a time period of 10. Since the nonlocal
expression is given by a weighted integral of the mean
velocity gradient, the mean velocity must be calculated
accurately. Figure 1 shows the mean velocity profile as a
function of y*(=yu,/V). The result of the DNS by Moser
et al. (1999) is also shown. The agreement between the two
DNS is good.

First, we examine the Reynolds shear stress {u’v’). The
nonlocal expression for the shear stress can be expressed as
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Figure 2 shows the profiles of the nonlocal eddy viscosity
Vi as a function of y” for four locations of y. Each
profile represents a contribution from the mean velocity
gradient at y” to the Reynolds stress at a given point of y.
The peak of each curve is located at y” =y ; this means that
the contribution from the mean velocity gradient at the same
point is the largest. The profiles of v ,,, are fairly wide;
the width between the two points where its value is half the
maximum is about 0.2. In particular, the profile in the case
of y=-0.905 is asymmetric and the contribution from the
regionof y’>y islarge.

Figure 3 shows the profiles of the Reynolds shear stress
(u’v’). Solid line denotes the value obtained directly by
averaging u’v’ whereas dotted line denotes (u'v’)
defined as Eq. (21). The two profiles and that of the DNS
by Moser et al. (1999) agree well with each other. This
agreement shows that the nonlocal expression (21) is
accurate and the nonlocal eddy viscosity is appropriately
evaluated from the DNS data. Dot-dashed line in Fig. 3
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Figure 4. Profiles of effective eddy viscosity vy, and

local eddy viscosity V;,,, -

denotes the value obtained from the local approximation
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Compared with the DNS data the absolute value of (u’v’),
is slightly small in the center region at —0.8<y<0.8
whereas it is too large near the wall at y<-0.8 and
aty >0.8 . This large value is caused by the incompleteness
of the local approximation; that is, the length scale of
dU/dy is small near the wall whereas the length scale of
Va8 fairly large even near the wall as shown in Fig. 2.
The difference between the local approximation and the
exact value is clearly seen by comparing the local eddy
viscosity with the effective eddy viscosity defined as

ouU
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If the local approximation is good, V;,,,, should be equal
t0 Vg, - In Fig. 4 the value of v, is70% of v, at
y=0 where it is about twice at y=20.9 . The ratio
between the two eddy viscosities is greater near the wall.

Next, we examine the normal stresses {(u’>) and (v’*).
The nonlocal expression for (u’?) is written as
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Figure 6. Profiles of rms of streamwise velocity, /(u’?) .
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Figure 5 shows the profiles of the nonlocal eddy viscosity
Vauie as a function of y” for four locations of y. The
value is negative at —1 <y’ <0 and positive at 0<y’<1.
This is because dU/dy’ is positive at —1<y’<0 and
negative at 0<y’<1 and the resulting contribution from
each region to (u’’) in Eq. (24) should be positive. We
should note that this component vy ,,;, is not the isotropic
eddy viscosity v, in Eq. (1); it may correspond to
vP'9U, /9x, in the nonlinear eddy-viscosity term in Eq.
(1). The nonlinear terms are necessary to describe the
anisotropy of the Reynolds stress; that is, {u’*) is greater
than (v’*) and (w’>). A slight anisotropy (u’*)>(v’*)
remains in the channel center at y=0. However, the local
approximation cannot explain the anisotropy because
dU/dy=0 at y=0. The anisotropy is caused by the
nonlocal effect; as shown in vy,,,,(y,y") for y=0 in
Fig. 5, the mean velocity gradient in the wide region of y’
affects the normal stress at the center. Figure 6 shows the
profiles of the root-mean-square (rms) of the streamwise
velocity fluctuation, +/{u’>) . The profile of the nonlocal
expression agrees well with the value obtained directly. This
result shows that the nonlocal expression is accurate also for

(u?).
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Figure 8. Profiles of rms of wall-normal velocity, {v’*) .

The nonlocal expression implies that the mean velocity
gradient creates the Reynolds stress. This mechanism can be
understood by considering the transport equation for the
Reynolds stress. The equation for (u’?) is written as
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The component (u’?) is created directly by the production
term, the first term on the right hand side. If the pressure-
strain term (the second term) and the diffusion term (the
fourth term) vanish and the created turbulent energy is
locally dissipated due to viscosity, the component may be
proportional to the local mean velocity gradient involved in
the production term. However, in actual turbulent flows, due
to the diffusion term the turbulent energy is transferred from
one point to another in space; the pressure-strain term can
also have a global effect because the pressure is determined
by the Poisson equation. The profiles of vy,,, in Fig. 5
reflect these nonlocal effects.

On the other hand, the nonlocal expression for the wall-
normal component (v’*) is written as
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Figure 7 shows the profiles of the nonlocal eddy viscosity
Vaizm as a function of y” for four locations of y. The
value is negative at —1<y’<0 and positive at 0<y’<1
like Vi, shown in Fig. 5. The profiles of vy ,,, are
wider than those of V., ; the contribution to (v’*) is
more nonlocal than that to (u’®) . Figure 8 shows the
profiles of the rms of the wall-normal velocity fluctuation,

(v’*) . The profile of the nonlocal expression agrees well
with the value obtained directly. The reason for the wider
profiles of Vy ,,, can be understood by considering the
transport equation for (v’*):
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There is no production term in the (v’*) equation. Instead
the component (u’?) is first produced and then is
transferred to (v’*>) through the pressure-strain term. The
pressure reflects the global distribution of the velocity field.
Therefore, the indirect effect of the mean velocity gradient
on (v’*) through the pressure-strain term is more nonlocal
compared with the direct effect of the production term
on{u’?).

We also carried out a DNS of channel flow at
Re, =150 with spanwise rotation; the rotation number is
Ro (=)L, /u )=25 where Q, is the angular velocity
of the system rotation. In this case the Coriolis force
—2Q xu is added to the velocity equation (19) and
—2Q xu’ to the Green's function equation (13). The
nonlocal expression for the Reynolds stress is modified as

JdU(y’
(u;u;)(y) = _J.dy/vNLijlz (y;y')(% -2Q, ]

_'[dy/VNLijZI(y;y/)ZQO (28)
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Figure 10. Profiles of turbulent shear stress (u’v’) for
rotating channel flow.

Figure 9 shows the profiles of the nonlocal eddy viscosity
Vi (V;Y7) as a function of y'. Comparing the profiles
with those for non-rotating channel in Fig. 2 we can see that
the nonlocal eddy viscosity has broader profiles. This large
length scale corresponds to the fact that large Taylor-
Gortler-like streamwise vortices were identified in previous
works of rotating channel flows.

Figure 10 shows the profiles of the Reynolds shear stress
(u’v’). Its profile is asymmetric with respect to the center
line. Solid line denotes the value obtained directly and
dotted line denotes {u’v’)y, given by (28). Dashed line is
the result of the DNS by Nishimura and Kasagi (1996). The
three profiles agree well with each other. The nonlocal
expression was shown to be also accurate for the rotating
channel flow.

CONCLUSIONS

A nonlocal expression for the Reynolds stress was derived
using the Green's function for the velocity fluctuation. The
nonlocal eddy viscosity involved in the expression
represents a contribution to the Reynolds stress from the
mean velocity gradient at remote points in space and time. A
DNS of channel flow was carried out to validate the
nonlocal expression; it was shown to be accurate for both the
shear and normal stresses. The profile of the nonlocal eddy
viscosity for the variance of the wall-normal velocity
component is wider than that for the streamwise velocity
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component. This difference in profile comes from the fact
that the wall-normal velocity variance is produced through
the pressure-strain correlation where the pressure fluctuation
is determined globally. A local expression for the Reynolds
shear stress was also examined; the stress is overestimated
near the wall. This overestimate is because the turbulence
length scale near the wall is not short enough compared with
the length scale of the mean velocity variation. The nonlocal
eddy viscosity for rotating channel shows wider profiles than
that for non-rotating channel.

The nonlocal expression is useful for a better
understanding of turbulent shear flow. It can be used to
investigate reasons for some defects of local turbulence
models. This analysis should be applied to turbulent flows
other than channel flow. Modeling the nonlocal eddy
viscosity itself remains as future work.
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