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ABSTRACT

In RANS modelling it is common practice to use classical
canonical flow cases such as the isotropic decay, the logarith-
mic law of the wall or homogeneous shear flows for calibrating
the model constants. With the help of Lie group analysis
a broad variety of invariant solutions (scaling laws) can be
derived comprising the latter classical solutions as well as a
broad variety of new solutions which have so far not been
used for model calibration or development. The symmetry
methods provide therefore a very useful tool for the improve-
ment of existing turbulence models or may be a guideline for
the development of new models. Since the symmetries of fluid
motion are admitted by all statistical quantities of turbulent
flows as can be taken from the multi-point equations (Ober-
lack, 2001), we can derive conditions for turbulence models so
that they capture the proper flow physics. Concerning these
constraints we will exemplary investigate two-equation models
as well as Reynolds stress transport models for their capability
to reproduce the scaling laws derived from symmetry meth-
ods. Therefore the two flow cases of fully developed turbulent
rotating pipe flow and a turbulent boundary layer flow have
been analyzed.

REQUIRED SYMMETRY CONDITIONS FOR TURBULENCE
MODELS

The necessary symmetry conditions for Reynolds-averaged
turbulence models have been formulated in Oberlack (2000)
as follows:

a.) All symmetries of the two-and multi-point correlation
equations have to be admitted by the model equations
(necessary but not sufficient condition!).

b.) There should be no additional unphysical symmetries in
the model equations also for dimensionally reduced cases
such as those admitting rotational symmetry.

c.) The symmetry conditions (a.) and (b.) have to be ad-
mitted by each single model equation and independent
of the momentum and continuity equation.

d.) All invariant solutions implied by the symmetries of the
two- and multi-point correlation equations also have to
be admitted by the model equations.

Condition (b.) emerged from a symmetry analyses of the
k — € model in plane and axisymmetric parallel shear flows
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with rotation. From these testcases Oberlack (2000) found
that the k£ — ¢ model has too many symmetries which are not
contained in the two- and multi- point equations. This obvious
shortcoming is further outlined below.

Khor’kova and Verbovetsky (1995) found from a symme-
try analysis of the k — € model that condition (a.) is usually
fulfilled by the most of modern turbulence model equations.
Though the k — € model apparently admits all necessary sym-
metries, we find that it is still not capable to reproduce all
invariant solutions which are derived from the symmetries of
the multi-point equations (condition (d.)). A first hint to-
wards this problem is given in Oberlack and Guenther (2003)
and Guenther et al. (2004) investigating shear free turbulent
diffusion. This clear contradiction may be illuminated by the
example of the fully developed rotating pipe flow and the ex-
ponential velocity law for the zero-pressure gradient (ZPG)
turbulent boundary layer flow.

CONSISTENCY OF RANS MODELS WITH THE ROTATING
PIPE FLOW SCALING LAW

Symmetry analysis

In Oberlack (1999) new scaling laws for high-Reynolds-
number turbulent pipe flow are derived using symmetry meth-
ods. For the analysis an infinite Reynolds-number was as-
sumed and hence viscosity has been neglected. Thus only
large-scale quantities such as the mean velocities are deter-
mined. Thereby two cases have been distinguished.

The first case is the most general case since no symmetry
breaking is imposed on the flow, giving an algebraic scaling
law for the axial and azimuthal mean velocity profile. Thus
Oberlack (1999) received for the axial mean velocity the ve-
locity defect law

I

with ¥ being a function of the velocity ratio @, /u, and since
Uw = R therewith dependend on the rotation rate Q. This
dependence has also been derived in Guenther and Oberlack
(2005b) analysing second moment closure models.

In Oberlack (1999) it was also found that the algebraic scaling
law for the azimuthal velocity component can be rewritten as
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Figure 1: Mean axial velocity @, profile from experiments from
Kikuyama et al. (1983) at Re = 50000 and N =1

The second test case is derived for a special combination of
group parameters which applies if an external velocity scale
acts on the flow. For this case a logarithmic mean velocity
profile for the axial velocity is received in Oberlack (1999)
with the singularity appearing on the pipe axis, not at the
wall like in the classical law of the wall:
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Oberlack found that (3) applies in some section of the radius
for rapidly rotating pipes in which the wall velocity dominates
the friction velocity u, and is therefore the symmetry-breaking
velocity scale. The corresponding azimuthal velocity is given
by

with v being a constant.

Results from experiments and numerical simulations

The algebraic scaling laws for the azimuthal and axial veloc-
ity component (2) is apparent in many experimental and DNS
data. The data available in the literature indicate that the al-
gebraic scaling law and its exponent have neither a significant
Reynolds number nor a rotation number dependence. Only
the extension towards the pipe axis is affected by these two
parameters. Using experimental data from Kikuyama et al.
(1983) (see figure 1 and 2) Oberlack suggests for the exponents
in the scaling laws for the azimuthal (1) and axial (2) velocities
¥ ~ 2 and for the coefficient in (2) ¢ ~ 1. (1) and (2) only ap-
ply for a moderate rotation number. As the rotation number
increases, the rotating wall velocity ., becomes the dominant
velocity scale and the axial velocity changes drastically. For
the algebraic law for the axial velocity Oberlack found from
comparison with DNS data from Orlandi and Fatica (1997)
that it is only valid up to r/R = 0.5. The algebraic law for
the azimuthal velocity is valid for 0.3 < r/R < 0.6. Below
r/R = 0.1 solid-body rotation is present. These findings are
also confirmed in Facciolo (2003). For the region of applica-
bility of the new log law (3) Oberlack suggests 0.5 < r/R < 0.8
using data from Orlandi and Fatica (1997). The coefficient A is
negative and approximately equal to —1 and the additive con-
stant w has been fitted to 0.354. Facciolo (2003) found from
his experiments that either the logarithmic region or the value
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Figure 2: Mean azimuthal velocity profile ﬁ¢ from experiments
from Kikuyama et al. (1983) at Re = 50000 and N =1

of the coefficient A differ with the rotation rate. Facciolo per-
formed experiments for the rotation numbers N = 0.5, 1.0 and
1.5 and found for 0.5 < r/R < 0.8 corresponding to the three
rotation numbers three different values for A being —2.6, —1.5
and —1.1 respectively. Putting A for all three rotation numbers
equal to —1 he found three different regions of fit for the three
different rotation numbers, reaching from 0.3 < r/R < 0.5 to
05<r/R<038

Model implications

Investigating plane and axisymmetric parallel shear flows
with rotation Oberlack (2000) found that the standard k — €
model (Hanjalic and Launder, 1976) has too many symmetries
(violation of condition (b.)), leading to non-physical behavior
under certain flow conditions such as rotation or stream-line
curvature. This is due to the fact that the k — ¢ model equa-
tions do not contain Coriolis terms for any type of flow so
that no symmetry breaking of scaling of time is possible. A
complete group analysis of the k — € equations in cylinder co-
ordinates discloses an additional symmetry of the form:

*

T =1, ﬁ;:ﬂ¢+br, kK"=k, € =c¢, (5

r*=r,

IS

where b represents the group parameter. This additional sym-
metry allows to add a solid body rotation to the azimuthal
velocity without any change to the remaining flow quantities.
Obviously this is unphysical since turbulence is highly sensi-
tive to rotation. The corresponding invariant solutions are

Uy =XrFt — b1, wg=CrFt —bor (6)

k=pur?k1, e=ygrr-1 (7)

with k1, %, ¢, 4 and 9 being constants. The new unphysical
symmetry is characterized by the group parameter b2. For
the azimuthal velocity we receive therewith a combination of
a linear and an algebraic law. Insertion of the scaling law into
the azimuthal momentum equation shows that only the linear
law is a solution and that the algebraic part is just a solution
if the group parameter obey special constraints.

Hirai et al. (1988) performed numerical calculations of the
present flow case with two two equation and one Reynolds
stress model. In their calculations with the standard k —
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e—model the latter finding of a linear profile for the azimuthal
velocity was confirmed.

Furthermore Hirai et al. performed numerical calculations
with a modified ¥ — e—model proposed by Launder et al.
(1977). In their model Launder et al. introduced a correc-
tion of the source term in the dissipation rate equation using
the Richardson number R;. The modified transport equation
for the dissipationrate is then

11d de
0= ——-— — 8
oe T dr (Vtrdr)—i— (8)
c ( d (a¢))2+(d@)2 Cea(1— BR)e| <
1V, r—{ — — —Ce — el —
1 dr \ r dr 2 ¢ k
where )
k*ug d, _
R; = 6—27’—25(”%) . 9)

Due to the additional term in the e—equation the unphysi-
cal symmetry (5), admitted by the standard k — e—model, is
broken.

For their numerical calculations Hirai et al. put 8 = 0.005.
The calculations give again linear profiles for the azimuthal
velocity component which is in contradiction to the algebraic
profiles, received from experiments. Though the unphysical
symmetry (5) is broken no improvement with respect to the az-
imuthal velocity is visible. The calculations with the modified
model show an increased axial velocity %, near the centerline
with increasing swirl strength. The predicted profile of @, be-
comes rectilinear and hence of cone shape when the swirl is
sufficient strong. As a result not even a qualitative agreement
to the experimental results is given. This is due to the fact
that an artificial symmetry breaking of scaling of time is im-
posed due to equation (9) in the e—equation. The azimuthal
momentum equation simplifies for the fully developed rotating

pipe flow to
1 d d ﬂ¢
0=—=— (rPy— (2 10
r2 dr <T thr(r)) 10

with vy = Cﬂg‘ If we introduce the invariant solution (6) /
(7) into (10) we receive:

Iy
0=2(k1 = Dk + 1C.EC (11)

This equation gives k; = +1. Here only the positive sign
makes sense since the azimuthal velocity increases from the
axis to the wall. This constitutes the linear azimuthal velocity
profile which the standard, as well as the modified k—e—model
give, though because of different reasons. If we now intro-
duce the solutions with @y = {r into the model equations the
azimuthal- and the axial velocity components completely de-
couple in the standard k — e—model. In the modified model a
coupling is received due to the additional term which contains
the Richardson number. The Richardson number is then given
by

e
R; = 2$g2r<—2’f1+2> . (12)

In order to be consistent with the scaling law (1)/(2) R; has
to be independent of » which results to the fact that k1 must
equal 1. Therefore we receive a rectilinear profile for the ax-
ial profile which becomes more extended for higher rotation
rates, since then the influence of the last term in (8) increases.
Thus condition (a.) is violated due to the structure of the
e—equation.
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Since experiments and numerical simulations reproduce the
scaling laws very good it should be demanded from the model
equations to be in accordance with the invariant solutions as
well (condition (d.)). Therefore we implemented the invari-
ant solutions (1)/(2) into the model equations, correspond-
ing to the procedure described in Guenther and Oberlack
(2005a). Thereby we omitted the unphysical symmetry of the
k —e—model. Due to the invariant solutions any r dependence
cancels out of the equations and a set of algebraic equations
is retained connecting the model coefficients as well as the
constants received from the symmetry analysis. Introducing
no model for the production term the following solutions for
w3 /92 and P/ can be derived from the simplified equations:

H_g - _ 062 - Cel (13)
e 2Cuk1 (CaCr(3k1 +1) + 22 (1 - 3k1))
21 (1 —3k1) + CpCea(1 + 3k1)
P_ e ) el ‘ (14)

K 25 (1 = 3k1) + Oy Cer (1 + 3k1)

With the standard model constants and k1 =~ 2, which is sug-
gested by experiments the solution for 13 /92 is positive. Since
P/¥ becomes negative for the standard model parameter we
can derive the condition

2(3k1 — 1)

> ——— x0.992 15
77 CrCa(1+ 3k1) (15)

under which (14) becomes positive.
For the second case given when an external velocity scale
acts on the flow we receive the invariant solutions

Uy =0+kalnr, ay=¢+ksr |, (16)

k=g, e=—, (17)

with k2 and k3 being constant. For this case the invariant solu-
tion for the azimuthal velocity (see 16) is once more simplified
to 44 = ¢. These invariant solutions satisfy the momentum
equations insofar that one receives for the azimuthal momen-
tum equation 0 = 0 and from the axial momentum equation
a constant pressure gradient

dp
= =Cuk1 2= 18
5% wh1 g (18)

is obtained. The reduced model equations can be solved for
62 /p? giving:

02 02 C.
— = Cu(s* +k3) and — = Cp—=

02 - 02(<2+k§) - (19)

Here the solution from the k—equation is in contradiction to
the solution from the e—equation since Ce¢1 # Cea. Thus it
is found that the k — e—model is not in accordance with the
invariant solutions (3)/(4) derived from symmetry methods.

Model improvements

In recent years many nonlinear stress-strain relations have
been proposed to extend the applicability of linear eddy-
viscosity models at modest computational costs. Craft et al.
(1996) as well as Shih et al. (1997) applied a nonlinear eddy
viscosity model to the rotating pipe flow with reasonable re-
sults. The basic assumption behind a nonlinear eddy viscosity



model is that the Reynolds stresses are not only related to the
rate of strain but also to the rate of rotation. The two scaling
parameters k and € are usually used to normalise the Reynolds
stresses the rate of strain as well as the rate of rotation as fol-
lows:

e

bij = ;k] - §6ij ) (20)

1k [ Ou; n ou; 1k [ du; ou; (21)
Sij = —— , Wij=—— —
R dx;  Ox; Y€ Or;  Ox;
Owing to the Cayley-Hamilton theorem, the number of inde-
pendent invariants and linearly dependent second order ten-
sors that may be formed from the strain- and rotation tensor

is finite. In general form the relationship may be written as a
tensor polynomial:

10
b= Z GAT™ . (22)
A=1

Thereby the coefficients G are functions of a finite number of
scalar invariants. In the general, three-dimensional case there
are ten tensors (see e.g. Pope, 1975):

T1=s,

T?=sw — ws,

T3=5% — %6{32},

T'=w? — 16{w?},

To=ws? — s%w, (23)
TO=w?s + sw” — 26{sw?},

T =wsw? — u.:zsw7

T8=sws? — szws,

T?=w?s® + s’w” — 25{s’w?},

TV=ws?w? — w?s?w

and five scalar invariants:

I ={s?}, I ={w?}, (24)
Is = {83}, I4 = {w?s}, I5 = {w?s?} .

Analyzing the scaling laws (1) and (2) for the fully developed
turbulent pipe flow it has been found that only the three ten-
sors T's, T's, T10 and the invariant Iy are sensitive to rotation
and hence do not admit the additional unphysical symme-
try (5) which is admitted by the standart k¥ — e—model. This
founding suggests a new model for the eddy viscosity which in-
closes the invariant /> due to which the additional, unphysical
symmetry is broken. From dimensional arguments we derive
the simple model

* € * €
l/t—CMI—z—Cum y (25)
which is just one example to model the eddy viscosity in terms
of Is. C} is thereby the model constant not related to C.
Interesting enough using (25) in the k — e—modell for the pro-
duction term while keeping the standard v; = C”g for the
diffusion term results in an additional scaling symmetry. Thus
we receive three scaling symmetries given by:

*

Gs1:r*:eclr7ﬁ2=ﬂz,ﬂ;:ﬂ¢7k*:k7e*:e_cle7

Gso:r™ =71, U} =uz, ﬂ(’;:ﬂdﬂ E* =e22k, ¢ = e3%2¢,

%

ng:r*:T,uz:e°3az,ﬂ;=ec3ﬁ¢,k*=k,e*:e,(26)

where the ¢; represent the group parameters. Due to this
additional symmetry the exponents in the algebraic laws for
k respectively ¢ and the velocity components decouple from
each other. Whether this has a physical meaning is unclear
at this point. Still an equivalent finding has been mentioned
in Khujadze and Oberlack (2004) investigating the two point
correlation equation for the zero-pressure gradient (ZPG) tur-
bulent boundary layer flow.

CONSISTENCY OF RANS MODELS WITH THE EXPONEN-
TIAL VELOCITY DEFECT LAW

Symmetry analysis

Analyzing the multi-point-correlation equations for paral-
lel turbulent shear flows, and ZPG turbulent boundary layer
flows a new exponential law has been found in Oberlack (2001)
which was identified as an explicit analytic form of the veloc-
ity defect law. Scaling the wall-normal coordinate in the outer
region with the Clauser-Rotta length scale (A = 6*;190 , where
& is the displacement thickness) and applying the free stream
boundary condition the exponential law can be written in gen-
eral form as

222~ F(n) = aexp(—0n), (27)
Ur

where o and 8 are universal constants and n = y/A. In Ober-

lack (2001) the exponential law (27) was solely derived from

the Lie symmetries of the Navier-Stokes and in turn from the

multi-point-correlation equations introducing the assumption

of symmetry breaking of the scaling of space.

Results from experiments and numerical simulations

Recently the theory has been carefully tested against very
high quality experimental data from the KTH database (Lind-
gren et al., 2004) and the Illinois windtunnel data (Nagib,
2004). It can be shown that the exponential law fits the experi-
mental data very well in the range of about 0.03 < y/A < 0.10
as can be seen from figure 3. The constants are determined to
a = 10.6 and # = 9.34.
Figure 4 shows the results of a direct numerical simulation
(DNS) of a ZPG boundary layer performed for Ry = 2240
(see Khujadze and Oberlack, 2004). The DNS results show an
exponential law in the region 0.025 < y/A < 0.15.

Model implications

Since a very good agreement between theory, experiments
and numerical simulations is observed it should also be de-
manded from any RANS models to be in accordance with
Oberlack (2001). Thus a further symmetry analysis of the
k — € model for ZPG boundary layer flows has been performed.
Using this as well as the symmetry breaking of the scaling of
space we obtain besides (27) the following set of invariant so-
lutions:

k = Cexp(—20n), e = D exp(—30n), (28)

where C and D are assumed to be universal parameter. The
model equations thus formally admit all symmetries of the
correlation equations (condition (a.)). Therefore it remains
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Figure 3: ZPG boundary layer mean velocity profiles from ex-
periments at different Reynolds numbers, performed at KTH
(Stockholm) (Lindgren et al., 2004); - - - exponential law
(Oberlack, 2001).
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Figure 4: Mean velocity profiles from DNS at Rey = 2240,
(Khujadze and Oberlack, 2004); - - - exponential law (Ober-
lack, 2001).

to check if they also admit the invariant solutions (condition
(d.)). The models which have been tested concerning this
requirement are the one-equation model from Spalart and All-
maras (1992), the classical £ — ¢ model from Hanjali¢ and
Launder (1976), the kK — w model from Wilcox (1993), the
v2 f model from Durbin (1991), the SST model from Menter
(1994), the vkL model from Menter and Egorov (2004), the
k — kL model from Rotta (1968) and as an example of a
Reynold stress model the LRR model from Launder et al.
(1975). Thereby it was found that the model constants of all
these models are in contradiction to the theory.

In the following we will examplary point out the problems
appearing in the Spalart-Almaras, the k — e- and the LRR
model. For our investigations we assumed that the exponential
region is characterized by an equilibrium between production,
diffusion and dissipation (see Fig. 5). All statistical quantities
depend only on the wallnormal coordinate leading to a sim-
plification of the model equations. Introducing the invariant
solutions (27) and (28) into these simplified model equations
we find that any exponential dependence on x2 cancels out.
Hence a set of algebraic equations is retained connecting the
model coefficients as well as a and 3. Interesting enough solv-
ing these equations we obtain coefficients for the exponential
law which are in contradiction to common model values.
Subsequently, we discuss in some detail three of the above
mentioned model equations. Replacing the dependent vari-
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able & in the Spalart-Almaras model by the invariant solution
7 = Eexp(—By) (29)
and neglecting molecular viscosity we receive the coefficient

A
B Cpioaur , (30)
268(2 + Ch2)
whereby Cpy1, 0 and Chpe are model constants. We can thus
derive the condition

_Gne (31)
2(2+ Cp2)
under which a proper modelling of the exponential region is
assured. Since Cy1, 0 and Cyo are positive, changing the al-
gebraic sign of one of the coefficients would probably lead to
a deficient modelling if other flow cases are considered.
The same problem appears if the invariant solutions (27) and
(28) are introduced into the k — € model. Here we receive
the following dependence of the coefficients on the model con-
stants:

— 9.9c(Cc1=Ceca) 2,2
C = Caei—T20, O UT, (32)

C.1—C
b ] CrhotCa=Car (AT Wt L
- (6Ccn0e—1204)2 A ’ ( )

leading with the standard model constants to

a’ulp

D =0.03v—1
A

C = —-021a%u2, (34)
which apparently is unphysical. From equation (32) a con-
dition for the model constants of the k — ¢ model may be
derived, guaranteeing a proper modeling of the exponential

velocity law:
Cea0o
Ca<Co ,—25<2. (35)
Ok
Thus e.g. changing o¢ to 1.04 which comes from the the second
condition (and is also in accordance with (15)) and keeping
the numerical value of the other model constants would give
positive values for C' and D. Since the model constants are
related by

2

K2 = 0.0,/ (Cez — Cer) (36)

due to the logarithmic law of the wall a change of o to 1.04
demands an adjustment of the Karman constant to 0.38. In
the literature the values for k range from 0.38 to 0.43. There-
fore kK = 0.38 is an acceptable choice and guarantees together
with 0. = 1.04 a correct reproduction of both the log-law re-
gion and the exponential law.

For the LRR model such a discrepancy appears in the model
constants that all coefficients of the scaling laws become zero
if the invariant solutions are introduced into the model equa-
tions. The reason for these mismatches seem to be due to
the fact that the given models are all calibrated employing
the classical flow cases. A calibration of the models using
symmetry methods would probably improve the described
shortcomings.

CONCLUSIONS

Investigating a fully developed turbulent rotating pipe flow
as well as ZPG flow it could be shown that for a proper mod-
elling it is not sufficient that the model equations admit all
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Figure 5: The turbulent-kinetic-energy budget in a turbulent
boundary layer at Reg = 1410 (Spalart, 1988); produc-
tion, - - - dissipation, --- diffusion.

symmetries of the two- and multi-point correlation equations.
We derived therefore as further condition for RANS mod-
els that there should be no additional unphysical symmetries
in the model equations and that the scaling laws which are
derived from the symmetries have to be reproduced by the
models.

From the given examples we can further propose conditions

for the model constants which have to be fulfilled so that the
model equations admit the invariant solutions.
It could thus be shown that a considerable improvement in
the field of turbulence modeling may be received if symme-
try methods are used for the calibration or development of
turbulence models.
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