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ABSTRACT

Three-dimensional direct numerical simulations of vortex
shedding behind cylinders have been performed when the
body diameter and the incoming flow involved spanwise lin-
ear nonuniformity. Four configurations were considered: the
shear flow, the tapered cylinder and their combination which
gave rise to the so called adverse and aiding cases. In contrast
with the observations of other investigators, these computa-
tions highlighted distinct vortical features between the shear
case and the tapered case. In addition, it was observed that
the shear case and the adverse case (respec. tapered case
and aiding case), yielded similar flow topology. This phe-
nomenon was explained by the spanwise variations of U/D
which seemed to govern/characterize these flows. For the
cases involving a shear flow a secondary flow was observed,
whereas for the tapered cylinder in an uniform flow an sin-
gular spanwise velocity component with low magnitude was
exhibited. Cellular shedding mode was identified for the four
configurations. The taper induced vortex-adhesion points at
the location between cells. The lower frequencies of the cells,
compared to two-dimensional cylinder in uniform flow, were
found to be connected with the oblique vortex shedding.

INTRODUCTION

Three-dimensional vortex shedding is a common feature in
many engineering applications such as marine risers, heat ex-
changers or ultra-clean protection devices in food industry.
These complex wake flows usually involve spanwise nonuni-
formity of the body diameter D and/or of the oncoming flow
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U. For linear variations of the oncoming flow (constant shear
flow) or of the cylinder diameter (linearly tapered cylinder)
the flow are considered to be similar in behaviour and exhibit
cells of constant frequency, oblique shedding and vortex dislo-
cations (see e.g. Silvestrini & Lamballais (2004); Lamballais &
Silvestrini (2002); Mukhopadhyay et al. (2002) for shear flows
and Piccirillo & Atta (1993); Balasubramanian et al. (1998);
Valles et al. (2002) for tapered cylinders). Indeed in both
cases, U/D and UD can change along the span of the cylinder.
Nevertheless, when for a shear flow U/D and UD spanwise dis-
tributions are similar, for a tapered cylinder these profiles are
opposed. In addition, for linear shear flow the base pressure
gradients leads to secondary flow (Woo et al., 1989), whereas
for tapered cylinder the base pressure is nearly constant with-
out secondary motion (Valles et al., 2002). Therefore, the two
wakes experience distinct spanwise flow mechanisms. Surpris-
ingly, they are considered to be similar in behaviour (Valles
et al., 2002; Balasubramanian et al., 2001). This viewpoint is
mainly explained in the light of the cellular vortex shedding
that both flows share. Moreover, when linear nonuniform on-
coming flow is combined with linear nonuniform cylinder the
wake flows experienced two opposed effects. In one case, in
which the maximum velocity corresponds to the large diam-
eter end of the cylinder, the spanwise distribution of UD is
enhanced whereas U/D remains constant. In the other case,
in which the maximum velocity corresponds to the small diam-
eter end of the cylinder, the spanwise distribution of UD lies
in an narrow range whereas U/D is enhanced. Considering the
effect of the shear, Balasubramanian et al. (2001) explained
that in the former case, called the adverse, the shear cancels



the taper, whereas in the latter, called shear aiding taper, the
shear aids the taper. In the following we use the name adverse
case when the variations of U/D are cancelled, and the name
aiding case when they are enhanced.

The aim of this study is to analyse the spanwise dynami-
cal organization and compare the flow topology of the wake
behind a circular cylinder in a constant shear flow with the
wake of a linearly tapered circular cylinder. Furthermore, in
the light of the vortical organisation of these two flows, the
responses of the wakes which combine both involved spanwise
nonuniformities are investigated. After a short presentation of
the four flow configurations considered, some details about the
numerical methods are presented. Then, from the vortex vi-
sualizations, it is shown that the shear case and the taper case
exhibit distinct features, whereas the shear case and the ad-
verse case (respec. tapered case and aiding case), yield similar
flow topology. In the three last sections, these observations are
discussed from the analysis of the wake transition, secondary
flows and frequency variations along the span of the cylinders.

FLOW CONFIGURATION AND PARAMETERS

Uniform and shear flows over circular and tapered cylinder
is considered in a Cartesien frame of reference I' = (0; x; y; z),
where the cylinder axis is oriented along the vertical direction
y at the intersection between the streamwise section z.,; and
the spanwise one z = 0 (see figure 1). In the case of tapered
cylinder, in the interval —Lj /2 <y < L} /2, the profile of the
diameter D(y), at & = xcy1 = 7D, is given by
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(1)
where D, = (D1 + D2)/2 is the median diameter. Outside
this interval the diameter is constant and equal to D; (for
y < —Ly/2) and to Dg (for y > Ly /2), with D1 > D. Note
that in the case of circular cylinder the diameter is D..

(¢) Adverse case

(d) Aiding case

Figure 1: Schematic views of the flow configurations.

At the inflow section, uniform or shear flows are considered.
The shear flow is aligned in the y-direction and extended in a
zone —Lj /2 <y < Ly /2. Outside this interval two streams
of constant velocities U; and Uz are imposed, with U; > Us.

Case Re;  Rey L Bu Bp
Shear 100 300 40D,  0.025 0
Tapered 100 300 40D, O 0.025

Adverse 100 900 40D, 0.025 0.025
Aiding 150 150 40D, —0.025 0.025

Table 1: Flow configurations

The inflow velocity profile U(y) at x =0 is

LI
Ur+Us  Us—Uh Dc{ (cosh[Di(er %)])}
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without any additional perturbations (steady inflow condi-
tion). In the case of a uniform flow, the inflow velocity profile
is the median velocity, given by U. = (U1 + Uz2)/2. Note
that the shape of the stream velocity is the same as the shape
of the cylinder. This shape allows us to consider a constant
shear flow extending on a wide region while preserving the
free-slip conditions imposed at y = £L, /2. As is reported in
the paper of Silvestrini & Lamballais (2004), the presence of
free-slip walls imposes a kinematic blocking associate with the
condition uy(x,£Ly/2,z) = 0. Note finally that a periodic
boundary condition is imposed in z-direction. The simula-
tions are performed by considering two parameters the shear
parameter Gy and the tapered parameter 8p. By and Bp are
defined by

D, dU Do D
= - ; = - 7 3
Bu U. dy Bp _2_1Ly (3)

The couple (By, L;) and (8p, L;) are considered with U; =
3U./2, Uz = U;/2 and D1 = 3D./2, Dy = D./2. The cor-
responding Reynolds numbers (Re = Uc.D./v) is 200 (except
in the adverse case where the Reynolds is 400), the varia-
tion of the local Reynolds number, associated to the diameter
profile (1) and the velocity profile (2) Re; = U1Di/v and
Reg = Uz Dy /v, are given in the table (1).

The shear flow and the tapered cylinder has the same profile
of Reynolds number, ranging from Re; = 300 to Rez = 100
along the span of the cylinder. The aiding case has symmetric
Reynolds number distribution, with a maximum equal to 200
at midspan, and a minimum equal to Re; = Rez = 150. For
the adverse case, the Reynolds number exhibits a parabolic
distribution ranging from Re; = 900 and Reg = 100.

NUMERICAL METHOD

The incompressible Navier-Stokes equations are directly
solved on a Cartesian grid of nz X ny X n. points in non-
staggered configurations. Sixth-order compact centered dif-
ference schemes are used to evaluate all spatial derivatives.
Time integration is performed with the second-order Adams-
Bashforth scheme. For more details about the numerical code,
see Lamballais & Silvestrini (2002). The no-slip condition at
the cylinder surface is imposed via an immersed boundary
method based on a direct forcing specifically developed to be
favourably combined with the use of compact schemes Par-
naudeau et al. (2003) (see table 2 for additional details on
simulation parameters).
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Case Domain Grid Teyl
Ly x Ly X L, Ng X Ny X Ny
22D, X 48D, x 12D, 397 x 385 x 216 7D,

Forall

Table 2: Parameters of all simulations (Note that the DNS
(c) is spatially under-resolved compared with the other calcu-
lations).

=]

(a) Shear case (b) Tapered case

(¢) Adverse case (d) Aiding case

Figure 2: Perspective views showing isosurfaces of the second
invariant (Q) of velocity gradient tensor — Q = 0.2U2/D? for
t="T75D./U..

RESULTS AND DISCUSSION

Instantaneous vortex pattern

Perspective views of instantaneous isosurfaces of the second
invariant Q = (£2;;Q;; — S5, S:;)/2 of the velocity gradient ten-
sor are shown in figure 2. The choice of the @ criterion has
been made to visualize vortex cores by avoiding the detec-
tion of vorticity sheets. It was observed that all flows shared
primary von-Karmén vortices, longitudinal vortices, oblique
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Figure 3: Spanwise distributions in the near wake of the shear
case: (a), U/D (-) and Re (- -) ; (b), Instantaneous iso-
surface of Q = 0.2U2/D2 at t = 75U./D¢; (c), Spanwise
mean velocity component (grey level) and formation length
(4, Williamson (1996) and Gerrard (1965) measurements),
(d); Strouhal number (¢, present simulations; — —, Fey et al
(1998) laws).

shedding, and pockets of dislocations!. Close examination of
figures 3a-b, 4a-b, 5a-b et 6a-b shows that the common feature
of the four configurations considered was the connection be-
tween the shedding orientation and the sign of the slope of the
spanwise distribution of U/D. However, despite the fact that
the shear flow configuration and the tapered configuration are
considered to be quite similar in behaviour (Valles et al., 2002;
Balasubramanian et al., 2001), the visualizations show that
both configurations exhibited distinct features. Furthermore,
it was noticed that the shear case and the adverse case (respec.
tapered case and aiding case), yielded similar flow topology.
Indeed, the shear and adverse flow cases indicated oblique vor-
tex shedding distribution along the span of the cylinder, with
increasing slant further downstream. In the very near wake,
the angle of the vortex shedding is related to the incoming
shear and to the vortex shedding propagation along the span
of the cylinder, whereas further downstream the obliqueness
is increased by the advection (Silvestrini & Lamballais, 2004).
In contrast, the tapered case and the aiding case yielded less
regular oblique shedding vortices with spanwise and temporal
variations. This phenomenon which may be linked with the
large spanwise variations of U/D, leading to large spanwise
variations of the vortex shedding frequency, will be discussed
in the next sections. In addition, due to the constant spanwise
distribution of U/D, the adverse case displayed vortex shed-
ding with large spanwise coherence, compared to the other

! Animations (mpeg format) are available on the internet link
http://labo.univ-poitiers.fr/informations-lea/tsfp4paper/index.htm



0.3: vywwn T T T T T T T

0321 oo b
03 AN J

N

L 08 2003¢ 4

= 026 ~e B

Q 024 0603~ i

T ooxf N g

I o2 0000

5 02F S b

- 0.18 0300000 i
0.16 [ 062000 B
0.14 T 0000000004

U/D

Figure 4: Spanwise distributions in the near wake of the ta-
pered case (see Fig. 3 for details).

configurations which exhibited vortex splitting into cells of
approximately constant shedding angle.

Spanwise wake transition

The distributions of Reynolds number associated with the
spanwise nonuniformity, of the inflow velocity profile and of
the cylinder diameter, are shown in figure 3a, 4a, 5a and 6a.

The wake of two-dimensional cylinders in uniform streams
have been extensively studied. For the laminar regime (50 <
Re < 190) and for the turbulent regime 260 < Re < 5000,
the flow is sensitive to end-conditions and parallel shedding
mode can be imposed. Whereas for the wake transition regime
(190 < Re < 250), the vortex shedding cannot be con-
trolled via boundary manipulations and spontaneous vortex
dislocations appear. It is generally considered that the tran-
sition to three-dimensionality involves two discontinuities in
the Strouhal-Reynolds curve which are linked with two insta-
bilities (Williamson, 1996). The mode A instability, whose
onset is about Re = 190, is characterized by a spanwise wave-
length of about four diameters, associated with streamwise
vortices in the Karméan street. The mode B instability, whose
onset is around Re = 230 and which becomes dominant from
Re = 260, is characterized by finer scale like streamwise vor-
tices between Karman vortices with a wavelength of about one
diameter. Furthermore, under strong perturbations (i.e. for
cylinder with finite aspect ratio in experiments (Williamson,
1992), or strong inhomogeneities in the initial conditions in
simulations (Zhang et al., 1995)), vortex-adhesion mode ap-
pears for 160 < Re < 230 and is characterized by spot-like
vortex deformations.

In the present flow configurations the aforementioned
regimes (laminar, transitional and turbulent) and modes (ad-
hesion, A and B) were identified. Indeed, for the four flows,
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Figure 5: Spanwise distributions in the near wake of the ad-
verse case (see Fig. 3 for details).

the three regimes and two of the three modes (vortex-adhesion,
A and B) coexisted along the span, and were retrieved at the
same Reynolds number values than for uniform wake flow.
However, for the case of the tapered and for the case of the aid-
ing, vortex-adhesions appeared more often in time and space
along the span of the cylinder than for the two other cases.
This mechanisms was responsible of the temporal variations
of the oblique shedding angle of the vortices. In figure 5b, for
the adverse case, one adhesion points was clearly observed at
y/Dc ~ 12 (i.e. in the transitional regime). Interestingly, for
the four wake flow considered, adhesion mode appeared even
at Reynolds number higher than 230 which is the upper limit
for two-dimensional cylinder in uniform flow.

The above general behaviour suggests that the spanwise
nonuniformity induced the appearance of vortex-adhesion
mode, hence increasing the transition to three-dimensionality.
In addition, the diameter taper, or strong spanwise variations
of U/D, seemed to enhance this phenomenon. As a result
the configurations dominated by the incoming shear flow (i.e.
the shear flow and the adverse flow) were not similar in be-
haviour to those influenced by the taper of the cylinder (i.e.
the tapered and the aiding).

Secondary flows and formation length

An important feature of the shear flow is the presence of
a secondary flow in the lee side due to the base pressure gra-
dient (Woo et al., 1989; Mukhopadhyay et al., 2002). On the
contrary, the wake over a tapered cylinder in a uniform flow,
exhibits roughly constant base pressure along the span and no
secondary motions have been observed (Valles et al., 2002).

Figures 3c, 4c, 5¢ and 6¢, show the isovalues of the span-
wise mean velocity component. As expected, results indicate
that the three configurations which involved a linear incoming
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Figure 6: Spanwise distributions in the near wake of the aiding
case (see Fig. 3 for details).

velocity profile had a spanwise flow toward the high veloc-
ity end. Surprisingly, the tapered cylinder in a uniform flow,
yielded a cellular distribution of the spanwise velocity, domi-
nated by cells of motion toward the small diameter end. This
wavy distribution of the secondary motions may be related
to the three-dimensionalities induced by the adhesion points.
Indeed, close examination of the animation showed that the
region of reverse spanwise velocity experienced an adhesion-
mode. It is also interesting to notice that for the aiding case,
an opposite spanwise velocity was also identified in a region
with adhesion-mode (y/D. ~ 15). However, it was worth
noting that for the four flow configurations considered, the
spanwise secondary motion exhibited wavy distributions. This
was explained by the short time integration (T" = 75D./U.)
available to compute the mean velocity. For the cases with
nonuniform incoming flow, long time average would give rise
to a smooth secondary motion from the low to high velocity
end, whereas for the tapered cylinder in a uniform flow we can
wonder wether this would still show a dominating secondary
motion with low magnitude toward the small diameter end.
Indeed in the latter case the direction of the dominating span-
wise motion was not explained. At this stage we suggest that
it might be induced by the obliqueness of the vortex shedding.
This point remains to be explored.

Figures 3d, 4d, 5d and 6d show the spanwise distribution
of the formation length. This characteristic length of the near
wake formation region was defined as the distance between
the cylinder axis and the streamwise coordinate of the points,
on each side of the wake, where the r.m.s. of the streamwise
velocity has reached a maximum. Results indicate that the
secondary flow took place in the recirculation zone. In addi-
tion comparisons with the experiments of Williamson (1996)
and of Gerrard (1965) showed that the spanwise wake tran-
sition influenced the formation length as does the Reynolds
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Figure 7: From top to bottom, shear case and tapered case:
(a), Spanwise variation of frequency spectra of the transverse
velocity component monitored at (z—2¢y;)/Dc = 1 and z = 0;
(b), Spatiotemporal variations of the transverse velocity along
the span of the cylinder.

number for two-dimensional cylinder in uniform flow. Some
discrepancies were observed at cylinder end in the side with
low values of U/D. This phenomenon, which needs further
insight, may be due to an end effect induced by the downward
secondary flow.

Frequency analysis

Figures 7a and 8b show the spanwise variation of frequency
spectra of the transverse velocity. The spanwise distributions
of the Strouhal number, which correspond to the maxima of
the spectra, are plotted in figures 3e, 4e, 5e and 6e. For the
four cases these frequency distributions scaled on the variation
of U/D. However, these distributions were not smooth and the
organization of the wakes exhibited cells of constant frequency.
Indeed, as already observed in previous studies the cellular
pattern of vortex shedding is an adjustment of the vortex shed-
ding frequency to the spanwise nonuniformity. For the adverse
case, as there was no variation of U/D, only a single cell was
expected. However, results yielded a Strouhal discontinuity
corresponding to the spanwise region where the laminar regime
gave way to the mode A and mode B regimes. In order to have
further insight in the transition of the frequency between cells,
spatiotemporal variations of the transverse velocity along the
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Figure 8: From top to bottom, adverse case and aiding case:
See Fig.7 for details.

span of the cylinder are presented in figures 7b and 8b. In
these representations the continuous bright region can be con-
sidered as the footprints of the vortex line, as there is a link
between the maximum of velocity and the passing of the vor-
tices. Results indicated that vortex dislocations appeared at
the boundaries of the cells. It is worthwhile to note that the
frequency of appearance of the dislocations was equal to the
beating frequency of two neighbouring cells. For instance for
the aiding case at y/D. ~ 20 the inverse of the difference of
frequency between the two cells (0.515 —0.449)~1 ~ 15U,/ D,
was nearly equal to the time period measured between two
dislocations. At this stage we can easily observe in the region
with slight variations of U/D, that much longer time integra-
tion would be needed to obtain statistically converged values.
Indeed for the adverse and tapered cases only one dislocation
can be observed in these spanwise regions. The slope of the
time traces of the transverse velocity are equal to the veloc-
ity propagation of the vortex shedding along the cylinder. In
addition, Silvestrini & Lamballais (2004) suggested that the
angle of the vortex shedding is directly link with the char-
acteristic speed of the vortex shedding propagation. Hence
our results indicate a spatio-temporal variation of the angle
of the vortex shedding around mean values. The mean angles
were determined from a scaling of the Strouhal laws, proposed
by Fey et al. (1998), by the cosine variations along the span.
It appeared that the angles found were consistent with the
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measurements made directly in the views of the instantaneous
isosurface of the second invariant (Q). Furthermore, it is ob-
served that in the same spanwise regions where the formation
length exhibited singular behaviour (see above), the Strouhal
number yielded larger values than for a two-dimensional cylin-
der in a uniform flow. This phenomenon may be connected
with an end effect induced by the secondary flow.
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