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ABSTRACT

Direct numerical simulations of homogeneous turbulent
shear flow subject to spanwise rotation have been carried out.
A passive scalar field with an imposed mean gradient was also
included in the simulations. The flow reached a state close
to the equilibrium structure with a slowly varying turbulence
anisotropy and nondimensional shear number SK/e. Differ-
ent rotation numbers have been used in the simulations and
the rotation either accelerated the growth of kinetic energy or
slowed it down. The growth was approximately exponential in
a few cases at intermediate shear times. At longer shear times
the kinetic energy was growing linearly in most of the cases.
The rotation affected considerably the anisotropy of the flow
and the velocity correlations. The scalar-velocity fluctuation
correlations and the direction of the turbulent scalar flux vec-
tor were according to the simulations also strongly influenced
by rotation, even as the mechanical to scalar time scale ratio.

INTRODUCTION

Turbulent shear flows subject to system rotation have been
investigated by Bech & Andersson (1997), Métais et al. (1995)
and many others. These studies have shown that rotation
affects the stability of the flow and can enhance or weaken
the turbulence fluctuations. A geometry which is because of
its simplicity very suitable for studying the combined effect
of rotation and shear is the uniformly sheared and rotating
turbulent flow. Bardina et al. (1983) and Salhi & Cambon
(1997) have studied this flow by large-eddy simulations (LES)
and rapid distortion theory (RDT), respectively. Recently,
Brethouwer (2005) performed direct numerical simulations
(DNS) of rapidly sheared homogeneous turbulence with span-
wise rotation and compared the DNS data with RDT. The
Reynolds stresses but also the large- and small-scale turbu-
lence structures were shown to be considerably affected by
rotation.

It is commonly assumed that rotating homogeneous shear
flows at long shear times approaches a structural equilibrium
with a constant turbulence anisotropy and constant nondi-
mensional shear number SK/e, where S is the shear rate,
K and e the turbulent kinetic energy and its dissipation,
respectively. Second-moment closure (SCM) models for in-
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stance, predict such an equilibrium structure but the predicted
equilibrium structure depends criticly on the model for the
pressure-strain correlations and the dissipation. For turbu-
lence model development and validation knowledge about the
equilibrium structure of rotating homogeneous shear flow is
thus of utmost importance. Nonrotating homogeneous shear
flow near equilibrium conditions was investigated experimen-
tally by Tavoularis & Corrsin (1981) and Tavoularis & Karnik
(1989). They observed an exponentially growing turbulent ki-
netic energy which can be understood if a constant value of
SK/e and P/e, were P is the production of kinetic energy, is
assumed. In that case K ~ exp(a.St) with

e P
Little is known about the equilibrium structure of rotating
homogeneous shear flow because the equilibrium state was not
reached in the simulations of rotating homogeneous shear flow
by Bardina et al. (1983) and Brethouwer (2005) as a result of
the short shear time and the high shear rates.

The influence of rotation on scalar transport in turbulent
shear flows is also of interest, but investigations on this topic
are rather scarce. Scalar transport in turbulent channel flow
has been investigated by Nagano & Hattori (2003) and Wu
& Kasagi (2004). Brethouwer (2005) studied passive scalar
transport in rotating homogeneous shear flow and found a
remarkably strong influence of rotation the direction of the
turbulent scalar flux vector. The conclusion of this study was
that the modelling of the effect of rotation on turbulent scalar
transport needs serious attention, but further studies are nec-
essary to support the model development.

Direct numerical simulations of homogeneous shear flow
subject to spanwise rotation are performed here. The sim-
ulations are set up in such a way that the flow approaches the
equilibrium conditions. The aim is to obtain a more complete
understanding of the influence of rotation on the equilibrium
structure and, at the same time, produce data which are use-
ful for turbulence modelling. The mixing of a passive scalar
with an imposed mean gradient is also considered in this flow
geometry. The aim in this case is to investigate how rotation
affects the transport and dispersion of scalars in turbulent
shear flows.



NUMERICAL SIMULATIONS

The flow configuration and the coordinate system are
sketched in figure 1. The governing equations are the Navier-
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Figure 1: The coordinate system and mean velocity profile

Stokes and the continuity equations for the flow field and the
advection-diffusion equation for the passive scalar. The pas-
sive scalar field has a linear and constant mean gradient in
the transverse xs-direction. The numerical approach follows
Rogallo’s (1981) method with a moving computational grid
which is periodically remeshed. A pseudo-spectral method
is applied to solve the governing equations and a fourth-order
Runge-Kutta method is used for the time advancement. Alias-
ing errors are suppressed by a combination of phase shifting
and truncation.

The size of the computational domain is 47 X 37 X 27 in the
streamwise, spanwise and transverse direction, respectively. A
grid with 1536 x 1280 x 1024 points is used in all simulations.
The initial velocity field was isotropic turbulence. This was
obtained by performing a separate simulation of decaying tur-
bulence without shear and rotation. When shear is imposed
on the flow, the turbulence length scales growth significantly.
To carry out a simulation of homogeneous shear flow whereby
the turbulence can evolve freely for a sufficiently long shear
time without significant influences of the periodic boundary
conditions on the evolution of largest scales, the initial turbu-
lence length scales have to be small. In the simulations the
initial longitudinal integral length scale was 0.0636 or smaller.
Because of the small initial length scales and the resolution re-
quirements the initial Reynolds number was necessarily rather
low. In the simulations the initial Re) = u'\/v, were u’ is the
root-mean-square of the velocity fluctuations and A the Tay-
lor micro scale, was between was between 29 and 45. The
Reynolds number, however, increased significantly during the
simulations. The Schmidt number of the passive scalar was
Sc = 0.7 and the initial passive scalar field was without fluc-
tuations.

RESULTS

In this section the results of the DNS of homogeneous tur-
bulent shear flow with spanwise rotation and a passive scalar
field are presented. Several simulations with different rotation
numbers R = 2Q/S, where 2 is the rotation rate of the flow
domain, have been carried out.

Flow field
The time development of the turbulent kinetic energy, ex-

tracted from the DNS, is shown in figure 2. The kinetic energy
is in all cases scaled with its initial value. In correspondence
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Figure 2: Development of the turbulent kinetic energy, ex-
tracted from the DNS. The straight, thin lines in the top and
bottom figure are exponential or linear fits to the DNS data.
The dotted and dashed lines in the middle figure are exponen-
tial and linear fits, respectively

with previous studies (Salhi & Cambon, 1997; Brethouwer,
2005) we classify R = 0 (no rotation) and R = —1 (zero ab-
solute mean vorticity) as the neutral cases. In figure 2 we see
that at R = 0, K has approximately an exponential growth
for intermediate values of St (here St is the nondimensional
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shear time). The evolution can be described by K ~ exp(a.St),
where a = 0.13. This value agrees well with the value obtained
by Tavoularis & Corrsin (1981) at about the same nondimen-
sional shear times. At larger St values the growth of K in the
DNS is approximately linear, which is rather surprising. The
same result has been obtained at other resolutions and differ-
ent domain sizes, so numerical artefacts seem to have a small
influence. One should note, however, that for low growth rates
the difference between linear and exponential growth is rather
subtle.

For —1 < R < 0 rotation destabilises the flow with a
maximum destabilisation at R = —0.5 according to Salhi &
Cambon (1997) and Brethouwer (2005) and this result is re-
produced here. A rapid growth of K is observed at R = —0.5
and a less rapid growth at R = —0.15 but still significantly
faster than at R = 0. For intermediate St values the growth
rate is approximately exponential as can be seen in figure 2,
but at larger St values differences appear.

In the other neutral case, R = —1, the growth of K is
significant whereas in the LES of Bardina et al. (1983) K was
approximately constant. For R > 0 the growth rate of K is
slower than at R = 0 as we see in figure 2 and thus rotation
stabilises the flow. At R = 0.075, 0.125 and R = —1 the
growth of K is approximately linear at larger St values and
K is about constant at R = 0.25. The latter rotation number
seems therefore close to the bifurcation point which separates
decaying and growing turbulence.

Figure 3 shows the time development of SK/e which is
the ratio of the turbulence time scale and the time scale of
the mean shear. As a result of the remeshing operation high
wave number information is lost and therefore some spikes
can be seen in the curves. SK/e does not reach a really con-

Figure 3: Development of SK/e

stant equilibrium value at all rotation numbers. Especially for
—1 < R < 0 when rotation destabilises the flow it is extremely
difficult to approach the equilibrium structure because of the
rapidly growing turbulent length scales. At R =0, SK/e ap-
proaches a value of about 4.5 which is lower than SK/e ~ 6
measured by Tavoularis & Corrsin (1981) but closer to the
value observed in the log layer of channel flow which is be-
tween 3 and 4. At R = —1 and R > 0 the equilibrium value of
SK /e appears to be higher than at R = 0. For —1 < R < 0,
SK/e does not yet approach a constant value, but the value
at the end of the simulations is of the same order as at R = 0.
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An equilibrium value close to or lower than the equilibrium
value at R = 0 seems therefore plausible.

Figure 4 presents the ratio of the production of kinetic en-
ergy P and e. An equilibrium value of about P/e ~ 1.8 is
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Figure 4: Development of P/e.

generally assumed for the nonrotating case on basis of the
experiments of Tavoularis & Corrsin (1981), although later
experiments (Tavoularis & Karnik, 1989) do not rule out a
lower value. At R = 0 the maximum value of P/e is about
1.7 at St = 9 but then it decreases to a value of about 1.3 at
St = 20. Tavoularis and Corrsin (1981) performed the mea-
surements for St between 8 and 12.6. It is thus not unlikely
that the flow in their experiments was not yet in an equilibrium
state and that their estimation P/e ~ 1.8 for the equilibrium
value is too high. The lower value of P/e obtained in later
experiments (Tavoularis & Karnik, 1989) at larger St values
supports this point of view.

At R = —0.15 and —0.5, P/e varies considerably, even at
larger St values, and consequently a equilibrium value can not
be estimated as we can see in figure 4. The curves level off
at the end of the simulations and this is probably caused by
turbulence structures which are becoming too large for the
computational domain. At R = —1 and R > 0, P/e ap-
proaches values somewhat lower than at R = 0. Taking into
consideration that P/e did not reach yet an equilibrium value
at R = —0.15 and —0.5 we may thus conclude that the influ-
ence of rotation on the equilibrium value of P/e is presumably
quite small. Note also that if the linear growth of K, as we
have observed in figure 2, proceeds and if SK/e keeps a finite,
non-zero value, we must conclude that a production-equals-
dissipation equilibrium is approached. This has been predicted
for nonrotating homogeneous shear flow by Bernard & Wallace
(2002).

In figure 5 the time development is presented of the
Reynolds stress anisotropy component bi3, where b;; =

Corrsin (1981) but the correlation uyiis/(ujus) = —0.45 at
St = 20 which is the same as in the experiments. At larger
St values b13 reaches larger negative values at R = —0.15 and

—0.5 and smaller negative values in the other cases compared
to the case R = 0.

In figure 6 the time development of the anisotropy mea-
sures b11, boo and b33 at R = 0 and R = —1 are shown. The
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Figure 6: Development of b;; at R = 0 (top figure) and R = —1
(bottom figure).

anisotropy of the turbulence at R = 0 in the DNS is some-
what smaller than in the experiments of Tavoularis & Corrsin
(1981). Especially, b1 is smaller and b2 is larger in the DNS.
Simulations with other resolutions and domain sizes gave very
similar results. The turbulence is quite anisotropic at R = —1
with strong transverse and weak streamwise velocity fluctua-
tions as can be seen in figure 6. The components b;; are almost
constant at larger St values signifying that the turbulence has

approximately the equilibrium structure.

The DNS data are very useful for validation of turbulence
models. As an illustration we consider here the modelling of
the slow pressure-strain correlation HZ(.JS.) which is a notorious

difficult term. A much used model for HZ(.JS.) is Rotta’s model
Hfj = —C1eby (2)
where Ci is a constant. Hallback et al. (1993) noticed

that C7 has a significant dependence on the Reynolds num-
ber and proposed a modification of the constant. In figure
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Figure 7: The slow pressure-strain correlations, extracted from
DNS, scaled with the prediction of Rotta’s model.

7, —Hg;)/(C&ebij), i.e. the slow pressure-strain correlation,
scaled with the prediction of Rotta’s model, is shown. For the
constant we use the Reynolds number modification proposed
by Hallback et al. (1993). The data, Hz(;.), e and b;; are all
extracted from the DNS at R = 0 and —1. If Rotta’s model
gives a too low prediction of HE;) the ratio —Hg;)/(Cl ebi;) > 1
and vise versa. Figure 7 shows that Rotta’s model gives a too
low prediction of Hg? at R = 0 and a too high prediction of
H%) and Hg? at R = —1. In the latter case Hgsz) is significant
but Rotta’s model gives a much too low prediction (results
are omitted here) because bag is very small as shown in fig-
ure 6. Sjogren & Johansson (2000) developed a non-linear
model for Hg‘?) through the introduction of terms quadratic or
higher order in b;;, but this model did not give a significant
improvement.

Passive scalar field

In this section the influence of rotation on the turbulent
transport in homogeneous shear flow of a passive scalar with
a transverse mean gradient is studied.

Figure 8 shows the development of the relative strength of
the scalar fluctuations defined as

=0 3)

where 6’ is the root-mean-square of scalar fluctuations, G the
mean scalar gradient and g2 = 2K. B is order one at R = 0,
—0.5 and 0.25, but at R = —1 it approaches a much larger
value at larger St values. This means that the scalar fluctua-
tions are very intensive compared to the velocity fluctuations.
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Figure 8: Development of the relative strength of the scalar
fluctuations B.

The turbulent scalar flux is affected by rotation as shown
by the balance equation

where Ily; is the pressure-gradient correlation and ey; is the
viscous and diffusive destruction term. Figure 9 shows the
time development of the scalar flux coefficient which is defined
as
Gi = wib/u0’ ()
The scalar and velocity fluctuations in the streamwise direc-
tion have a significant correlation at R = 0, —0.5 and 0.25,
which is typical for shear flows (Tavoularis & Corrsin 1981).
However, at R = —1, {1 ~ 0. Because the second and third
term on the right-hand-side of the balance equation for 1;15
cancel each other at R = —1, this result implies that the first
production term 443G is balanced by Ily; and €pq.
Strong correlations between the scalar and the transverse

velocity fluctuations are observed at R = —0.5 and R = —1
and relatively weak correlations for R > 0 as shown in figure 9.
Because of intense transverse velocity fluctuations at R = —1

the transverse scalar flux is very large. Hence, the production
rate of scalar variance which is given by —u36G is high and
this explains the high relative intensity observed in figure 8.

The scalar flux vector is thus in general not aligned with
the mean gradient. It is interesting to see how the direction
of the scalar flux vector is influenced by rotation. Figure 10
shows the development of the angle gy of the scalar flux vector
with the coordinate system which is here defined as

ag = tan™ ! (uz6/ui6). (6)
The scalar flux is down the mean gradient if ay = —90°. At
R =0, ap = —32° at St = 20 which differs somewhat from
g = —23° measured by Tavoularis & Corrsin (1981) but this
is probably a consequence of the lower turbulence anisotropy
in the present DNS. The scalar flux vector is slightly more
aligned with the flow direction for R > 0 and it is more aligned

with the mean scalar gradient for R < 0. At R = —1 the
scalar flux is in fact strictly down the mean gradient as we see
in figure 10.

The rotation appears to have a considerable influence on
the large-scale mixing of a scalar. We now investigate if rota-
tion influences the scalar dissipation as well. An often model
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relation ¢1 (top figure) and {3 (bottom figure).

‘20 T T T T
.," |
40+ R/ -
7/
/) T
l. /, -0 ]
] g
R —R= 0
/! ---R=-05
/I ...... R= _1
80/ ---R=0.25
L | L | L 1 L 1 L |
-1005 4 8 12 16 20

St

Figure 10: Development of the angle ap of the scalar flux
vector.

for the dissipation of scalar variance is to assume a constant
ratio of the mechanical to scalar time scale

U = (2K/¢)/(66/x) (7)

where the scalar dissipation x = x(96/9x;)(96/0x;). Figure
11 shows this ratio, extracted from the DNS, for different ro-
tation numbers. W approaches a value of about 2 at R = 0
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Figure 11: Development of the mechanical to scalar time scale
ratio W.

which is a typical value found in case of scalar mixing in shear
flows. The rotation appears to have a significant influence on
¥. For —1 < R < 0, ¥ is larger than at R = 0 while at
R = —1and R > 0 it is smaller. More analyses are necessary
to find an explanation for this behaviour.

CONCLUSIONS

Large-scale direct numerical simulations have been applied
to study the equilibrium structure of uniformly sheared tur-
bulence subject to spanwise rotation. At the same time the
transport of a passive scalar with a transverse mean gradient
has been investigated in this flow. In the nonrotating case
R = 0 the growth of the turbulent kinetic energy is exponen-
tial at intermediate shear times, in agreement with previous
experiments (Tavoularis & Corrsin, 1981). However, at longer
shear times the growth seemed to be linear which was an un-
expected result. For —1 < R < 0 the flow was destabilised
by rotation resulting in a rapid exponential growth of the ki-
netic energy at intermediate shear times, but at longer shear
times also in this case deviations from the exponential growth
rate were observed. At other rotation numbers, R = —1 and
0 < R < 0.25 the growth of the kinetic energy was linear at
longer shear times and stabilisation of the turbulence seemed
to occur around R = 0.25. The equilibrium values of the
anisotropy measures of the turbulence were are also signifi-
cantly affected by rotation. At R = —1 (zero absolute mean
vorticity) the transverse velocity fluctuations are much more
intense than the streamwise fluctuations in contrast to the
situation in many shear flows. Modelling of rotating homoge-
neous shear flow is still a difficult topic and an example is the
slow pressure-strain correlation. Predictions of Rotta’s model
for the slow pressure-strain correlation have been compared
with the DNS and significant differences were observed.

The influence of rotation on the transport and mixing of a
passive scalar in homogeneous turbulent shear flow has been
studied in detail. In case of a transverse mean scalar gradi-
ent previous studies have shown that in turbulent shear flow
the streamwise scalar flux is significant leading to a misalign-
ment between the scalar flux vector and the mean gradient
(Tavoularis & Corrsin, 1981). In the present DNS we observed
in general also a misalignment, but the direction of the scalar
flux vector was significantly affected by rotation. At R > 0

the scalar flux in the streamwise direction was larger than the
scalar flux in the transverse direction, but at R = —1 the scalar
flux was almost exactly down the mean gradient. Small-scale
scalar mixing was affected by rotation as well. An illustration
of this is the variation of the mechanical to scalar time scale
ratio with the rotation number.

Modelling of rotating turbulent flow is of course an impor-
tant topic, but the present study shows that modelling the
effect of rotation on turbulent scalar transport also needs se-
rious attention.
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