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ABSTRACT

It is numerically shown that the stretching rate, normalised
by the reciprocal of Kolmogorov time, of long material lines
(or wide surfaces) in stationary homogeneous turbulence de-
pends on the Reynolds number. This is contradicting the
conventional belief that the material object stretching is solely
determined by the smallest-scale eddies. A physical explana-
tion based on the intensive folding of the material objects is
suggested to understand the observed Reynolds number de-
pendence of material object stretching.

INTRODUCTION

A material object is defined by the one which always con-
sists of the same set of fluid particles (Batchelor 1952). By
this definition, a material line in two-dimensional (2D) space
(or a material surface in 3D) is the boundary between two
parts of fluid. The deformation of material line (or surface)
is, therefore, closely related to the mixing of these two parts
(see figures 2 and 3), and their intensive (more precisely, ex-
ponential) stretching in turbulence is a manifestation of the
strong mixing. Since the turbulence mixing is one of the
hottest unresolved problems in this field of research, we de-
sire to understand the mechanism and statistics of material
object stretching in turbulence.

It is G.K. Batchelor (1952) who first shed light on the defor-
mations of material lines and surfaces in statistically station-
ary homogeneous turbulence. He suggested that the material
lines (or surfaces) could be regarded as a set of statistically
equivalent infinitesimal material line (or surface) elements in
stationary homogeneous turbulence, and predicted that the
total length L(t) of a material line (or the total area A(t) of a
surface) grows exponentially, and that its stretching rate

d d
v = T log L <or v= alogA) (1)
is independent of the Reynolds number if it is normalised by
the reciprocal of Kolmogorov time
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Here, ¢, v and w’ are the energy dissipation rate per unit mass,
the kinematic viscosity of fluid and r.m.s. value of the vorticity.

It has been pointed out (Kida and Goto 2002, Goto and
Kida 2002), however, that, in contrast with Batchelor’s sugges-
tion, the statistics of finite-sized material objects are different
from those of infinitesimal elements because of the fact that
the material objects are stretched inhomogeneously by co-
herent eddies even in homogeneous turbulence, and that we
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Figure 1: Numerically simulated energy spectra in (a) 2D
stationary homogeneous turbulence (inverse energy cascade
regime) and (b) 3D stationary homogeneous turbulence. We
have simulated four different Reynolds numbers in 2D, and
five dif{erent Reynolds numbers in 3D. Dashed lines indicate
the k™3 power law.

need to track finite-sized material objects to accurately esti-
mate their statistics by numerical simulations. Recent direct
numerical simulation (DNS) of finite-sized material objects
shows that material objects are stretched by clusters of co-
herent eddies at Kolmogorov length scales (Goto and Kida
2003); see also figure 4. One might speculate that material
object deformation by (clusters of) these Kolmogorov-scale
eddies leads to the Kolmogorov-scaling of stretching rate. In
contrast with this conventional idea, however, we have found
that the stretching rates cannot be scaled by 7, ! (figure 5).



The purpose of the present article is to resolve this surprising
finding in terms of the rapid folding of material objects.

DIRECT NUMERICAL SIMULATION

Numerical scheme

We have performed the DNS of material objects advected
by stationary homogeneous isotropic turbulence of an incom-
pressible fluid. Velocity field is governed by the Navier-Stokes
equation with an external forcing at large scales in the case
of 3D (or at small scales in 2D) and the equation of continu-
ity under periodic boundary conditions. A drag force is also
employed in the 2D case in order to avoid the energy accumu-
lation at large scales. The energy spectra, in both cases of 3D
and 2D, are proportional to k~5/3 in the inertial range because
of the forward (in 3D) or the backward (in 2D) energy cas-
cade (figure 1). We have simulated five different Taylor-length
based Reynolds numbers, Ry = \/g u'? ranging between 57
and 252 in 3D by using grid points up to 5123. Here, v’ is
the r.m.s. value of a velocity component. As seen in figure
1(b), it is not still fully developed; that is, the ratio of the in-
tegral scale £ to the Kolmogorov scale n (= e*%u%) is O(10).
While in the 2D turbulence, we can simulate fully developed
turbulence, by employing 40962 grids, which reveals the k_%
power law spectrum over nearly two decades. The details of
the numerical schemes and parameters of the present DNS are
described in Goto and Kida (2003) for the 3D case and Goto
and Vassilicos (2004) for 2D.

In the present DNS, material lines (or surfaces) are ex-
pressed by a chain of short line segments (or a set of small
triangles), and the temporal evolution of the position vectors
of these line segments (or triangles) are tracked by solving the
advection equations

d
30 @ = ul(@e(0), 1) (3)
for vertexes xp(t) of the line segments (or triangles). The

right-hand side of (3) is estimated by an interpolation of
velocity field w(x,t) at numerical grids. Interpolations are
employed at every time step in order to keep the line seg-
ments (or the sides of triangles) short enough compared to
the Kolmogorov length.

Temporal evolution of stretching rate

The typical temporal evolutions of a material line and a
surface are shown in figures 2 and 3, respectively. They seem
to be deformed by turbulence in a quite complicated man-
ner. Nevertheless, by plotting the deformed material line in
2D together with the vorticity field in figure 4, we can see the
deformation is closely related to the coherent vortical struc-
tures at the smallest scales. Note that in this 2D turbulence of
the inverse energy cascade regime the vortical structures are
dominated at the smallest scale, since the enstrophy spectrum
peaks in a high wavenumber region (the energy spectrum is
proportional to k=35 in the inertial rage, as seen in figure 1,
and therefore the enstrophy spectrum is proportional to k+%)
This observation implies that the deformation of material ob-
jects is governed by the smallest-scale eddies. Similarly to
this 2D observation, it has been reported that the Kolmogorov
scale eddies play crucial roles in the deformations of material
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(a)

Figure 2: The temporal evolution of a material line, which is
the boundary between two coloured regions, in 2D stationary
homogeneous turbulence (inverse energy cascade regime). The
size of shown box is about 6.517. (a) t = 0, (b) 57, and (c)
107y.

lines in 3D homogeneous turbulence. For example, the aver-
age curvature of deformed material lines is O(10n) irrespective
of the Reynolds number (Goto and Kida 2003).

Therefore, we may expect that the stretching rate (1) is
also independent of the Reynolds number if it is normalised by
7'7]_1, which is proportional to the r.m.s value of the vorticity.
However, this is not the case as seen in figure 5. We plot in the
figure the numerically estimated stretching rates of material
lines in 2D and of lines and surfaces in 3D as a function of nor-
malised time. The initial conditions of these material lines (or
surfaces) are the straight lines (or flat square surfaces) which



(a)

(b)

Figure 3: The temporal evolution of a material surface in 3D
stationary homogeneous turbulence. Shown box is the peri-
odic box of the velocity field; its side is about 200n. (a) t =0,
(b) 51 and (c) 107y.

are sufficiently longer (or wider) than £ (or £2). Because of
the independency between the strain field and the direction
of the material objects, the mean stretching rate vanishes ini-
tially. After some transient time, the stretching rates clearly
depend on the Reynolds number; the higher Reynolds num-
ber is, the larger the stretching rates become. Because of the
rapid growth of the total length of lines (or area of surfaces)
it is not possible to track them for a long time. So it has not
been conclusive, but we can conjecture that v saturates at the
later times to different values for different Reynolds numbers
(figure 5(a)).
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Figure 4: Deformed material line in 2D turbulence (same as
figure 2(c)) is plotted together with the magnitude of vorticity.

PHYSICAL EXPLANATION OF THE REYNOLDS NUMBER
DEPENDENCE

Rapid folding

The key notion to understand the Reynolds number depen-
dence of material line (or surface) stretching is the intensive
folding. As seen in the visualisation of material objects (e.g.
figure 2), they are quite intensively folded. This is because
while the extent of material line (or surface) grows only al-
gebraically, its total length (or its total area) grows exponen-
tially. On the other hand, because of the incompressibility of
fluid, the folded parts of lines (or surfaces) tend to accumulate
in large stretching regions. Hence, if the folding is effective,
then the average stretching rate gets larger because stronger
stretching parts are more weighted by the accumulation by
folding.

Recall that the Reynolds number R is proportional to
(£/n)%. Therefore, at a higher Reynolds number, turbulence
consists of eddies in wider ranges of length scales. For the
stretching of material objects only the smallest-scale eddies,
which has the smallest turnover time, are important. How-
ever, for their folding, eddies at all length scales play roles. It
is, therefore, intuitively clear that the efficiency of folding is
different at different Reynolds numbers. This is a reason why
the stretching rate of sufficiently long lines (or wide surfaces)
depends on the Reynolds number.

Numerical verification

In order to numerically verify the physical explanation that
the Reynolds number dependence of stretching rate comes
from the folding we have carried out two preliminary numeri-
cal tests using material lines in 2D DNS.

The first test is the DNS of infinitesimal lines. The infinites-
imal objects cannot be folded, and we expect that the average
stretching rate does not depend on the Reynolds number. In-
deed, this is the case as seen in figure 6(a). Incidentally, it has
been reported by Girimaji and Pope (1990) that the average
stretching rate of infinitesimal line (and surface) elements in
3D stationary homogeneous turbulence is also independent of
the Reynolds number.

The second test is the DNS of material lines in 2D which are
initially Kolmogorov length. In such a case, the extent of a line
grows according to the Richardson diffusion, and therefore if
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Figure 5: Average stretching rates (v), normalised by 7,71,
of (a) material lines in 2D, (b) lines in 3D and (c) surfaces
in 3D. The initial conditions of the objects are straight lines
much longer than £ or flat square surfaces sufficiently wider
than £2. The normalised stretching rates are larger for higher
Reynolds numbers.

we normalise the time by the Kolmogorov time, the temporal
evolution of the extent is independent of the Reynolds number.
Hence, as far as the extent is smaller than the integral scale
L of each flow, the folding of the material lines is statistically
similar even if the Reynolds numbers are different. This is
because only the eddies smaller than the extent of a line can
contribute its folding. Hence, as far as the extent is smaller
than L, the average stretching rate is also independent of the
Reynolds number. Indeed, this expected behaviour is observed
in figure 6(b).
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Figure 6: (a) Average stretching rate of infinitesimal line el-
ements in 2D. Four almost identical curves for four different
Reynolds numbers are plotted. (b) Average stretching rates
of material lines in 2D whose initial length is fixed to be the
Kolmogorov length. Four curves for four different Reynolds
numbers are plotted.

CONCLUDING REMARKS

In contrast with the conventional idea, the average stretch-
ing rate, normalised by 7, ~!, of sufficiently long material lines
(or of wide surfaces) in stationary homogeneous turbulence de-
pends on the Reynolds number; it is larger at higher Reynolds
numbers. This does not directly indicate that a singularity, or
intermittency, at the smallest scales grows with the Reynolds
number, since the average stretching rate of infinitesimal ele-
ments does not reveal any Reynolds number dependence. The
dependence does not necessarily stem from the two-length-
scale property of coherent vortices in 3D turbulence, i.e. sheet-
or tube-like structures, since we can see the Reynolds number
dependence in 2D as well as in 3D. The physical reason of
this Reynolds number dependence may be that the folding
of material objects is governed by various-scale eddies while
the stretching is dominated by the smallest scale eddies with
the time-scale 7. The folding by the larger scale eddies lasts
longer than 7, and the time may become comparable with the
integral time 7. The combined effect of these small and large
time-scales is likely to yield the Reynolds number dependence.
Although the two numerical tests have been carried out to con-
firm this picture, more quantitative argument of the behaviour
of stretching rate observed in figure 5 is left for a near-future
study.
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