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ABSTRACT

The € equation is considered from the viewpoint of spectral
evolution in a closure theory. The balance of vortex stretching
and enstrophy destruction, on which the € equation depends,
occurs whenever the spectrum can be described by parame-
ters that vary slowly relative to the turbulence itself. The
central question for modeling is whether these parameters sat-
isfy closed equations of motion. A multiple scale analysis of
a closure model in the slow variation limit, analogous to the
Chapman-Enskog expansion of kinetic theory, suggests that a
universal € equation does not exist. Further evidence against
this possibility is given by constructing self-similar states of
turbulence evolution each of which is consistent with an €
equation with different constants.

INTRODUCTION

The € equation is often considered a weak link in turbulence
modeling. Single-point models begin with exact equations
for certain basic correlations; they assert that the unknown
correlations that these equations inevitably contain can be
expressed in terms of these basic correlations. Typically, no
statistical or other theory underlies this assertion, which is
justified after the fact by urging that it works well in compu-
tations.

The € equation presents a much more formidable challenge:
the classic analysis of the problem by Tennekes and Lumley
(1972) demonstrates that formulating an e equation requires
modeling the O(Re®) difference between two correlations each
of which is O(Re!'/?). From this viewpoint, no definite corre-
lation is even being modeled. For this reason, the € equation
is typically treated in the modeling literature as unavoidable,
but despite its many successful applications, fundamentally
questionable.

The € equation will be studied here in what appears to be
the simplest possible context: homogeneous isotropic turbu-
lence driven by a statistically unsteady random force. This
problem will be analyzed using spectral closure. We will in-
vestigate the conditions under which the predictions of closure
can be approximated by the solutions of a two-equation model.

Whereas a closure gives a definite equation for the evolu-
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tion of ¢ which is obtained by simply integrating the closure
equation itself, two-equation modeling requires that this equa-
tion be expressed in terms of ¢ itself, the kinetic energy k, and
the total production P. The possibility of this reformulation is
the subject of this paper. Even if the energy spectrum can be
described well by two scalar parameters, it is far from evident
that these parameters satisfy closed equations of motion.

It might be objected that our analysis replaces the original
problem of modeling the statistical Navier-Stokes equations
by the problem of modeling a spectral closure. But in fact,
no heuristic used in modeling does not apply to the spectral
closure we will use; we can therefore argue that a good model
for the € equation of statistical Navier-Stokes theory should
also be a good model for our simpler problem. This replace-
ment problem also has the important advantage that definite
answers can be obtained independently of CFD calculations.

For simplicity, the analysis will be based on the Heisen-
berg model. Of the many approaches to linking two-point
and single-point models, we follow the parametrization of the
spectrum by two scalars introduced by Besnard et al (1996).
There is an analogy between their ansatz and the normal so-
lution adopted as a starting point for the Chapman-Enskog
expansion of kinetic theory. It may be useful to think of the
Navier-Stokes equations themselves as a five-equation model
for the Boltzmann equation.

The conclusions are that the balance between vortex
stretching and enstrophy destruction required by the € equa-
tion can indeed be justified in a very large class of problems
in which the spectrum changes slowly. Nevertheless, a closed
and universal € equation cannot be derived.

THE HEISENBERG CLOSURE

In the Heisenberg closure, the spectral evolution equation
is

E(k,t) = P(k,t) — %}'[E(n,t)] — D(k,t) (1)

where E(k,t) is the energy spectrum, the dissipation spectrum
is D(k,t) = 2vk?E(k), and the spectral energy flux F is the



functional of E

FLE(k, 1)] =6/ dr’ (Fu')ZE(n',t)/ dp \/7% 2)
0 K

Single point moments are defined as usual by
o0
k(t) = / dk E(k,t)
0
o0
e(t) = / dr 20K B(k,t)
0

Pt) = / ~ i P(,t) (3)
0

the total kinetic energy, dissipation rate, and total production,
respectively.

Suppose first that the production spectrum is independent
of time. Then if there exists an inertial range of scales in which
P(k) ~ 0 and D(k) ~ 0, the steady solution of Eq. (1) is the
Kolmogorov spectrum

E(k) = Cge?/3~5/3 (4)
characterized by a constant energy flux
FlE(K)] =P =c¢ (5)
More generally, the steady inviscid solution has the form
E(k) = Cx€2/3x7%/3 f(k/Ko) (6)

in terms of a function f which satisfies f(z) ~ 1 when = > 1.
Integrating Eq. (1) over all wavenumbers gives the energy

balance
k=P —c¢ (7)

Multiplying Eq. (1) by 2vx? and integrating gives the exact
dissipation rate equation

¢=I-5-G (8)
where
¢ = /°° dr 2vKk?P(k,t) (9)
0
S(t) = /Ooo dr 2unza—i.7-'[E(n,t)] (10)
G(t) = /oo dr W2k E(k, 1) (11)
0

TIME-DEPENDENT SOLUTIONS

Suppose that the production spectrum depends on two
time-dependent scalars: the peak forcing scale A9 and the total
production amplitude P, so that

P(k,t) = P(t)m(k/ X0 (1)) (12)

This form of the production spectrum naturally suggests
looking for a general time dependent solution of Eq. (1) of
the form

Eo(k,t) = Ce(t)? k753 ¢(k /ro(t)) (13)

a local Kolmogorov solution analogous to the normal solution
in kinetic theory which coincides with the spectral ansatz of
Besnard et al (1996).

Because the integral operator which determines the flux
through Eq. (2) does not depend on time, it is evident that

2 Flmo(s, 1) = 0 (14)
oK

when P(k,t), D(k,t) ~ 0. However, Eo(k,t) does not satisfy
Eq. (1) because its time derivative

; _[2¢_¢ m Ko
Eo(n,t)f[?’e % o no]Eo(n,t) (15)

need not vanish. A solution of Eq. (1) should therefore be
sought as an expansion

E(k,t) = Eo(k,t) + E1(k,t) + - -+ (16)
Following the Chapman-Enskog expansion, regroup the

terms in the expansion so that the lowest order correction
term E(k,t) satisfies the integral equation

. 7]
E0</€’t)_P(K‘1 t)+ a}-[EO(K/! t)]+D(/€7 t) = L[El (K" t)] (17)
where £ is the linearized Heisenberg operator defined so that
17} 7]
—F[Eo + E1] & —F[Eo] + L[E1] (18)
oK oK

Explicitly,

L[B1(k,1)] = % / dr' (k') E1 (k') x
0
t)

o0 K
Ey(p, 190
/ dp 0(1; + ——/ di' (k)2 Eo(k',t) x
. P 2 Ok 0

/‘00 dp by (p7t) (19)
K )

Assume that the total kinetic energy is contained in the solu-
o0 fee]
tion Ey, so that / dk Eo(k,t) = k and / dk E1(k,t) =0
0

Formally then, E; is treated as a higher ogder term than Ep
and would enter an integral equation for the next term in the
expansion, Fs.

The solvability condition for Eq. (17) is

o0
/ di {Eo(k,t) — P(k,t) + i]-'[Eo(hz,t)]
o Ok
+D(k, )} ¥ (k) =0 (20)
where U(k) is any solution of the integral equation
LUk, )] =0 (21)

Explicitly,

o0 o0
LHw(k,t)] = fcrzz/ dq 8_\1!/ dp M
. 9 J, V »

c/2 P o ’
_W/o dqa—q/o de' (K" ) Eo(k',t) (22)
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which has the obvious solution ¥(gq,t) = 1. Accordingly, the
solvability condition becomes simply

/ di {Eo(k,t) — P(k,t) + %}"[Eg(n,t)] +D(k,t)} =0
0

(23)
which is equivalent to the energy balance Eq. (7). Thus, Eq.
(17) for E1(k,t) satisfies the required solvability condition.

In the inertial range where P(k) and D(x) are both negli-
gible and F[Ep] = 0, Eq. (17) has the form

2E ———] Bols,t) ~ L[E1(k,8)]  (24)
Je b Ko Ko

The definition Eq. (19) of £ and the Kolmogorov scaling of

Eq show that Eq. (17) admits the scaling solution

By (k) ~ E /3713 (25)

with the x=7/3 scaling proposed for time dependent turbu-
lence by Yoshizawa (1994); however, in agreement with Kol-
mogorov’s notions of locality, this correction does not depend
on Kg.

Eq. (25) suggests that the expansion Eq. (14) is an ex-
pansion in power of ¢/e¢*/35=2/3, the ratio of the imposed
frequency ¢/€ to the local turbulence frequency €1/3x2/3. This
quantity has the role of the Knudsen number in this expansion,
which thereby assumes weak time dependence of the spectrum.

THE BALANCE BETWEEN VORTEX STRETCHING AND
ENSTROPHY DESTRUCTION

Yoshizawa’s correction term Eq. (25) has an important
implication for the formulation of the ¢ equation. Because
P(x) is concentrated near large scales, it can be neglected in
Eq. (8), which reduces to ¢ = —S — G. Substituting the

expansion Eq. (16) in the definitions Egs. (10) and (11),

S=S0+S1+-:--and G=Gg+ G1 + --- where
o0
5 0
So = / dk 2vKk° — F[Eo(k,t)]
o oK
o0
Gy = / dr 42k Eo(k)
0
o0
S1 = / dr 2vK2L[E1(k,1)]
0
o0
Gy = / dr 42 k* B (k) (26)
0

If the expression for Ey(k) from Eq. (13), assumed to ex-
tend up to scales k < kg ~ €1/4/u3/4 is substituted in the
definitions of Sy and Go, we find

o0
So = f/ AvkF ~ *Vliczl ~ *Ii;/s
0
Go ~ VZK,;O/s ~ 52/3 (27)

indicating the NZ/ 3 ~ Rel/? divergence of vortex stretching

So and enstrophy destruction Gy identified by Tennekes and
Lumley (1972).

The steady state balance obtained by setting ¢ = 0 and,
since II(k,t) is concentrated near large scales, II = 0 in Eq.

&9

(8) is S + G = 0. But this balance obviously remains correct
for the time-dependent expression Eq. (13), therefore also
So + Go = 0; thus, in the limit of slow spectral variation
described by Eq. (13), the leading order Rel/2 divergences in
the exact € equations cancel.

Simple calculations show that

S1 0~ un3/3 ~ ng
G1 ~ u2/~:3/3 ~ K3 (28)
therefore,
€ —S1 -Gy~ ng (29)

which demonstrates that, again in the limit of slow spectral
variation described by Eq. (13), there is in fact an O(Re?) dif-
ference between —S and G. A special case of this cancellation
was noted by (Rubinstein et al, 2004).

We note that the derivation of an € equation crucially de-
pends on the existence of Yoshizawa’s correction term: if the
spectrum were exactly a local Kolmogorov spectrum as in Eq.
(13), the balance S + G = 0 would hold identically, and the €
equation would reduce to € = P. However, Yoshizawa’s correc-
tion was found from the solution of a linear integral equation;
it does not correspond to any obvious correlation. This makes
single-point modeling of the exact € equation problematic.

THE GENERAL COMPATIBILITY EQUATION

The special structure of £t makes it possible to replace Eq.
(21) by a linear second order ordinary differential equation.

Define
/ / E;))gp / (&) Bo(x
C = \/K3Ey(k) / A —= Eo(p ¥(p)

K

G:/ k2 Eo (k) (k)dr

(30)
Note that
F' =Av G =B'v (31)

Rewrite L1 using these definitions as
LU (k)] = £2(AV — F) + %(G —-BU)=0 (32)
Eq. (32) states that
2CK*(A¥ — F) + (G — B¥) =0 (33)
One k derivative gives
[2CK?) (A¥ — F) 4+ 2Ck2 AV — BV =0 (34)

which can be rearranged as the ordinary differential equation
for W,

!
B —2CkK%A _,

AV = | ———
(2Ck2)

(35)

It is again evident that ¥/ = 0 satisfies Eq. (35); if ¥/ # 0,
then a second solution is found from

v = %exp{/gdn} (36)



where
B —2Ck%A
[2Ck2)
It is not possible to conclude that a second consistency con-
dition exists, because the process of elimination that started
from Eq. (33) can also begin instead from (AV — F) +
[2Ck%]71(G — BY) = 0. However, this path proves to lead
to the same result as Eq. (36); thus, we can conclude that
there are indeed two consistency conditions for the solution
of Eq. (17), the energy equation Eq. (7) and Eq. (20) with
¥ defined as the solution of Eq. (36). The derivation of a
satisfactory two equation model will depend on the possibility
of expressing this second equation in terms of the single point
moments k(t), e(t), and P(t). Investigation of this possibility
is in progress.

Q= (37)

SELF-SIMILAR EVOLUTION

The € equation is usually derived phenomenologically. If we
agree that € should be a function of k, €, and P, the general
form .

€= E(CEIP — Ce2¢€) (38)

follows from dimensional analysis. Values of C¢; and C.s are
found by requiring the two-equation model Egs. (7) and (38)
to give the correct results for the decay rate of isotropic turbu-
lence and the growth rate of homogeneous shear flow, assumed
for this purpose to be universal constants.

It is important to show that this argument does not con-
tradict our previous conclusion. A crucial feature is that this
argument relies on calibration to self-similar flows. Under con-
ditions of self-similarity, it is trivial that the frequency scales
é/e, P/k, and €/k are linearly related; therefore, for a self-
similar flow, Eq. (38) is a kinematic necessity, not a general
dynamic statement. Indeed, one can go considerably further
and state that two-equation models can only rigorously apply
to self-similar states (Clark and Zemach, 1998) because only
then is the infinity of time scales in a turbulent flow reducible
to a finite number.

In (Rubinstein and Clark, 2005), general classes of self-
similar states of time-dependent isotropic turbulence are con-
sidered. A typical example is the class of self-similar states
for which P(t) = At* and ¢(t) = Bt* at long times. These
solutions can be obtained in forced isotropic turbulence by
making the production grow as indicated, and forcing at a
scale \o(t) = Ct~%/2=3/2, Note that the forcing scale is time-
dependent. The relation between the constant C in the forcing
scale and the asymptotic ratio of production to dissipation,
A/B depends on the model.

The constants in a two-equation model consistent with this
state satisfy

a Ce1(A/B) — Ce2

a+1  (A/B)-1

This equation can be interpreted in two different ways: given
the production growth rate exponent a and the proportion-
ality constant C in the growth law for the forcing scale, this
equation determines all of the values of the constants Ce1 and
Ce2 consistent with these parameters; alternatively, given the
constants in the ¢ equation, it determines values of a and C
which define possible self-similar states for the two-equation
model defined by Egs. (7) and (38).

Clearly, any choice of model constants selects a class of
consistent self-similar states, but not every self-similar state

(39)

is consistent with a given choice of constants. A similar phe-
nomenon has been observed in shearless diffusion in (Oberlack
and Gunther, 2003). The underlying reason is that the Navier-
Stokes equations admit infinitely many scaling groups and
corresponding similarity solutions, whereas a two-equation
model can only admit a restricted subclass. It should be noted
that spectral closures, in particular the Heisenberg model used
here, are consistent with all the scaling invariances of the
Navier-Stokes equations.

We note that it is not crucial that the length scale of the
forcing be prescribed; these self-similar states can also be ob-
tained by requiring the forcing scale to be a fixed multiple of
the peak scale of the energy spectrum; in this way, the turbu-
lence ‘chooses’ its integral scale, which is not fixed in advance
(Rubinstein and Clark, 2005).

CONCLUSIONS

It is uncertain whether a universal equation govening the
evolution of € and ko, or equivalently of k£ and e, exists apart
from the energy balance Eq. (7). This situation contrasts
unfavorably with kinetic theory, in which closed equations
for the descriptors of a local Maxwellian, namely the hy-
drodynamic moments, can indeed be derived through the
Chapman-Enskog expansion. These equations are of course
the Navier-Stokes equations themselves, which could be de-
scribed from the present viewpoint as a ‘five equation model’
for the Boltzmann equation.

Several reasons can be identified which explain this distinc-
tion between kinetic theory and turbulence theory. In kinetic
theory, the scale separation between thermal fluctuations and
hydrodynamic motion is so great that the effect of the thermal
fluctuations on the hydrodynamic motion admits description
through transport coefficients alone. In turbulence, a contin-
uum of relevant scales of motion separates the long time scales
on which kg evolves from the small scales on which ¢ evolves.
This lack of strong scale separation impedes the derivation of
evolution equations for descriptors of slowly varying spectral
evolution, but cannot yet be said to rule it out entirely.
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