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ABSTRACT

The EDQNM theory is used to study the behavior of the
spectrum of the scalar flux in turbulent flow as the Reynolds
number increases. In isotropic turbulence, at low and moder-
ate Reynolds number, good agreement is observed with DNS
and experimental results. The Reynolds number is varied up
to a value of 107 and it is shown that at very high Reynolds
numbers, the scalar flux spectrum in the inertial range be-
haves as predicted by the classical dimensional analysis of
Lumley (1967) and scales as K~7/3. At Reynolds numbers
corresponding to laboratory experiments the closure leads to
a spectrum closer to K ~2, showing that in the experiments
the high Reynolds number asymptotic limit is not reached.

The closure is then applied to homogeneous shear flow and
the spectra of cross-stream and streamwise scalar flux are in-
vestigated. The streamwise scalar flux spectrum is found to
scale as K ~23/9, This result is in agreement with experiments
but disagrees with classical dimensional analysis. An alterna-
tive asymptotic form is proposed.

INTRODUCTION

The effect of turbulent fluctuations on a mean scalar field is
accounted for by a turbulent scalar flux, u;0. The scalar flux
is thus a key quantity in the prediction of the mean scalar field
and its understanding and modelling are of major importance
for environmental and engineering applications. In order to
investigate the contributions of the different turbulent length-
scales to the scalar flux, we examine the spectral distribution
of scalar flux over wavenumbers, i.e. the scalar flux spectrum.
The aim of the present paper is to discuss the behavior of this
spectrum as the Reynolds number increases.

Lumley (1964,1967) predicted that in isotropic turbulence
with a mean scalar gradient I' = 8©/dz;, the spectrum
F,¢(K) of the scalar flux scales as:

Fup(K) ~ T /3K=T/3 (1)

with e the dissipation of kinetic energy and K the wavenum-
ber. This K—7/3 behavior was observed in atmospheric mea-
surements by Kader and Yaglom (1989) and Kaimal et al.
(1972). Atmospheric experiments are however complicated by
statistically non-stationary and non-homogeneous effects and
recent results show a spectral slope closer to —2 (Su et al.,
2004).
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In more controled laboratory experiments, such as the
wind-tunnel studies of Mydlarski and Warhaft (1998), the
slope of the spectrum of the scalar flux is found to change
with the Taylor-scale Reynolds number R). As R, increases,
the spectrum is becoming steeper and at R) = 582 a value
close to —2 is found for the spectral exponent. In a recent
work (Bos et al., 2004) we showed that the K —2 scaling can
be compatible with dimensional analysis and that it can also
be found using LES.

In the present paper, we use the Eddy-Damped Quasi-
Normal Markovianized (EDQNM) closure (Orszag, 1970), ex-
tended to the scalar flux spectrum by Herr, Wang and Collins
(1996) (see also Ulitsky and Collins (2000)), to study the be-
havior of the scalar flux spectrum as R varies. A range of
Ry between 30 and 107 is covered, so that the gap between
the moderate Reynolds number experiments of Mydlarski and
Warhaft (1998) and the high Ry atmospheric measurements
is bridged. Values as high as 107 can not even be observed in
the atmosphere of our planet, but allow to check the validity
of the scaling law in the high R, asymptotic limit.

Subsequently the EDQNM theory is applied to homoge-
neous shear flow with a mean scalar gradient perpendicular
to the mean flow direction. The spectra of the vertical and
horizontal scalar flux are examined and a non-classical inertial
range behavior of the horizontal scalar flux is observed.

All through the paper the Prandtl number is supposed to
be of order unity.

EDQNM RESULTS FOR ISOTROPIC TURBULENCE WITH
A MEAN SCALAR GRADIENT

The equation for the scalar flux spectrum in isotropic tur-
bulence with a mean scalar gradient is:

2 Fup () + (v + ) K Fyg () =

P(K) + T,5" (K) + 1(K) (2)

in which the second term on the left-hand side is the molecu-
lar destruction of scalar flux, P(K) is the production of scalar
flux by the velocity field, Tul\él‘ (K) is the non linear transfer
term and II(K) stands for the pressure term. These last two
terms are closed using the EDQNM theory. For the two con-
stants that appear in the closure, values compatible with the
Lagrangian History Direct Interaction Approximation (LH-
DIA, Kraichnan (1965)) theory are used. They differ from the
ones proposed in Ulitsky and Collins (2000). The energy spec-
trum E(K) is also predicted by the EDQNM theory. It has to



be pointed out that all quantities in (2) depend only on the
wavenumber K and not on the wavevector K. This property
stems from the fact that in the case of a fluctuating scalar field
produced by the interaction of an isotropic turbulence with a
mean scalar field, there is an exact relation between the 3D
spectrum F;g (K ) and its integral over a sphere with radius K
(Herr et al., 1996):

fué’(K)N(l_”'z)FuG(K) (3)

with u the cosine of the angle between the scalar gradient axis
and the wavevector.

Investigation of the different terms

In this section an analysis of the contributions to the scalar
flux equation is performed. The production and molecular
destruction spectra are given by:

P(K) = ;FE(K)
V) = (v + ) K* By (KK )

The non-linear transfer is obtained by spherically integrating
the triple correlation term:

Tuf\‘fgL(K) = /z; [in (FT/,. (G(w)uj (e)us(xe+7)

~0(@)u; (@ + ryuse + 7)) ) |dAK)  (5)

in which F'T, denotes a Fourier transform with respect to the
separation vector 7.

It can easily be seen that this term vanishes in the one-point
limit. The spectrum of this term integrated from wavenumber
zero to infinity is thus zero and the transfer is conservative.
The pressure term,

1= 8
(K) = /EK FT), <p0(a:)aw3p(a: +'r)) dA(K)  (6)

on the contrary has an integral which is not zero: it appears to
be a destruction term. T%"(K) and II(K) are both functions
of the triple correlation terms. The closed expressions for these
two terms are obtained with the EDQNM theory. They are not
recalled here since their full length expressions can be found
in the paper of Herr et al. (1996). In figure 1 we show the
balance of the terms in equation (2) for two different Reynolds
numbers. In the figure, it can be observed that Fyg(K) is
mainly produced at large scale by the mean gradient term
and that it is destroyed at smaller scales by both pressure and
molecular effects at small Ry, and by pressure effects only at
high R). The conservative role played by the transfer term
TNL(K) also appears in the figure.

The spectral slope of the scalar flux in the inertial range

In Bos et al. (2004) we showed how dimensional analysis
allows for an inertial range slope of the scalar flux spectrum
varying from —5/3 to —7/3, depending on the behaviour of
the spectral flux. The behaviour of the slope of the spectrum
in the inertial range will now be investigated by EDQNM cal-
culations. In figure 2 we show spectra for Reynolds numbers
in the range 100 < Ry < 107.

Figure 3 illustrates the dependency of the slope on the
Reynolds number. The results do not leave any doubt about
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Figure 1: Spectral balance between the production, non-linear
transfer, pressure and viscous destruction of scalar flux. Top:
Ry, = 100, bottom: Ry = 10000
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Figure 2: Spectra of the scalar flux spectra for Reynolds num-
bers in the range 100 < Ry < 107.
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Figure 3: The slope of the inertial range of the velocity-scalar
cross spectrum as a function of Ry. Present EDQNM results
compared to the experiments of Mydlarski and Warhaft (1998)
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Figure 4: Scalar flux spectra for Reynolds numbers in the
range 100 < Ry < 107

the asymptotic inertial range slope. The closure shows a ten-
dency towards a —7/3 slope. It also shows that this value is
only approached for very high values of the Reynolds number
(Ry = 10* yields a —2.27 slope). It can therefore be argued
that a clear K ~7/3 behaviour will not easily be observed on
earth, atmospheric experiments reaching Ry up to 10%. As
in Mydlarski and Warhaft (1996) for the velocity spectra we
try to fit a power law to the results. The empirical relation
nyg = 7/3(1 — 2.73R;0'54) describes the data pretty well.

It is furthermore shown that the experimental results of
Mydlarski and Warhaft (1998) are in reasonable agreement
with the calculations. From those results it can be concluded
that a —7/3 slope will not be observed in DNS of decaying
isotropic turbulence with a mean scalar gradient in the near
future or even in wind-tunnel experiments, the Reynolds num-
ber being too low in both cases.

In figure 4 compensated spectra are plotted for Reynolds
numbers in the range 100 < Ry < 107. The prefactor Cyg in
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Figure 5: Comparison of one dimensional scalar flux spectra
from DNS, SDIP (O’Gorman and Pullin (2005), and experi-
ments (Mydlarski and Warhaft (1998)) with EDQNM results.

the scaling relation:
Fug(K) = Cyugle' /K773, (7)
appears to be of order unity. It is found C,g ~ 1.5.

In figure 5 the present EDQNM results are compared with
experimental data of Mydlarski and Warhaft (1998) and DNS
and SDIP results of O’Gorman and Pullin (2005). The spec-
tra are one-dimensional spectra. An exact relation between
one-dimensional and spherically averaged spectra exists in the
case of isotropic turbulence and scalar fluctuations created by
a uniform mean scalar gradient (see O’Gorman and Pullin
(2003, 2005)). It reads:

FlD(Kl):§/OO K2+K12F (K)dK (8)
4 K K3 uf

SDIP stands for sparse direct inter-interaction perturbation
and corresponds to a variant of the lagrangian direct interac-
tion approximation of Kraichnan (1965). The SDIP result is
given only in the asymptotically high Reynolds number limit.
It yields an overestimation of the constant C,g as explained in
O’Gorman and Pullin (2005). The spectrum calculated with
EDQNM theory is situated in between the DNS and the ex-
perimental results.

The molecular dissipation of scalar flux

It was already noted in figure 1 that, when the Reynolds
number increases, the viscous dissipation becomes small com-
pared to the production term. We call I'42 the integral value
of P(K), €9 the integral value of V(K). The dependence of
the ratio, €,9/TU? has been studied in the literature. Myd-
larski (2003) found a decrease proportional to R;LQ and in
the DNS of Overholt and Pope (1996) a R} *"" scaling is ob-
served. In figure 6 their observations are compared with the
results of the EDQNM calculations. The closure is applied to
a range of Ry much wider than obtainable in DNS or wind-
tunnel experiments. It can be observed that there is good
agreement between the DNS of Overholt and Pope (1996) and
the EDQNM calculations at low R), where the R;O'W scal-
ing is found. At high R,, the EDQNM results scale as R} '.
This R;l dependence can be analytically predicted assuming
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Figure 6: The ratio of molecular destruction to production of
uf as a function of Ry, compared to the results of the DNS of
Overholt and Pope (1996) and the values of Mydlarski (2003).

Lumley’s scaling (equation 7) for F,g(K). Substituting (7) in
the expression for the molecular dissipation of scalar flux, one
obtains:

K
ewp = (v + ) / " K2 [Cut e PR Ak (9)

ignoring the lower bound of the integral by assuming a very
high Ry. With the expressions for the Kolmogorov scale and
Ry:

2\ 34 l/4 U+
K <3CK> PEVZ R Ve

it is immediately found that:

€uo/TU? ~ R} (10)

In the intermediate range of R}, the R;l'z scaling found in the
experiment of Mydlarski (2003) is not found with the EDQNM
closure. It has to be pointed out that Mydlarski only measures
one component of the dissipation.

HOMOGENEOUS SHEAR FLOW WITH A MEAN SCALAR
GRADIENT

We consider homogeneous shear flow, S = U1 /dz3, with
a uniform scalar gradient I' = 80/dz3. Due to the presence
of shear the scalar flux has now two components: the vertical
flux wd, parallel to the scalar gradient, and the horizontal flux
uf, parallel to the mean flow direction. The equation for the
scalar flux spectrum is:

F3} aU; 90
=+ W+ a)K?| Fi+ —Fj+ —&;5 =
g T P 0w T T oy
U, OK | F; +28ﬁn Kan:FJ
Ozn, OKnp oz; K?
—iKn (Tgin — Toin) +i———LTpjn (11)

in which &;; is the spectral tensor, associated with the two-
point double velocity correlations, and Ty;,, corresponds to the
two point triple correlations. F; and ®;; are functions of the
wavevector and time. In the presence of shear (3) does not
hold anymore; nor ®;; can be expressed exactly as a function
of the wavenumber only. A full EDQNM approach of the
problem would then require to build and numerically integrate
a wavevector dependent closed set of equations. In order to
simplify the numerical task that would result of this complete
approach, we integrate the equation over spherical shells with
radius K to obtain the variable:

Fu (K1) = / /E (KL OAA(K) (12)

and for the spectral tensor as proposed by Cambon et al.
(1981):

o1 (K 1) = // ®y; (K, t)dA(K) (13)
Sk
The equation then becomes:

1} aU;
|2+ 0+ ] Pt + S p (a0
J

20
+5g, Pii (K) = Tjg(K) + Ij5(K)
Ly

+Ty " (K) + I (K) (14)

The model for ¢;;(K,t) can be found in Touil (2002). As
in Cambon et al. (1981), we introduce models based on
isotropic tensorial functions (see also Eringen (1971) or Schies-
tel (1993)) to express the rapid pressure term II}) and linear
transfer Tifé. The non-linear transfer and the slow pressure
term are treated with the EDQNM model as used above. Even
though the closure was derived for isotropic turbulence we will
use it here in the case of an anisotropic velocity field. The ap-
proach is not rigorous and has to be seen as an approximation.

The isotropic tensorial functions that represent the linear
transfer and rapid pressure in our approximation introduce
one unknown constant A. To calibrate our model, A was var-
ied and the results of (14) were compared to the experimental
results of Tavoularis and Corrsin (1981) and the DNS results
of Rogers et al. (1986). The value of A that yielded the best
agreement for the turbulent Prandtl number and the horizon-
tal to vertical scalar flux ratio, uf/w@, was retained.

In figure 7 the slopes of the vertical and horizontal scalar
flux spectra, n,g and n.g respectively, are plotted as func-
tions of the Reynolds number. These slopes were evaluated at
two different times, corresponding to St = 0.5 and St = 12.
Although a large difference exists between the values found
at low Ry, it is observed that the influence of time decreases
when increasing the Reynolds number.

The exponent of the vertical scalar flux spectrum tends to
N = 7/3 as in the case of isotropic turbulence with a mean
scalar gradient: the asymptotic behavior of this spectrum is
not affected by shear. In fig. 8 the compensated spectra are
shown. The exponent of the horizontal spectrum, n,g¢ (fig.
7 bottom) is found to tend a value larger than 7/3. However
the high Reynolds number asymptote seems to be smaller than
the value n,g = 3 proposed by Wyngaard and Coté (1972):
Ny = 23/9 appears a more plausible value. This can also be
observed in figure 9, where the spectra compensated by K23/9
are plotted. It is interesting to point out that measurements
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Figure 7: Inertial range slopes of the scalar flux spectra as a
function of the Reynolds number. Top: vertical scalar flux.
Bottom: horizontal scalar flux.
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Figure 8: Compensated vertical heatflux spectra for 32 <
Ry < 10% at St =0.5.

in the atmosphere have found values values close to 2.5 (Wyn-
gaard and Coté (1972), Caughey (1977), Kader and Yaglom
(1989)) and that 23/9 ~ 2.555.

Dimensional analysis based on the quantities S, € and K
provides the following expression for the spectrum:

11— T+2a
Fug(K)~T5% 3 K~ 3 (15)

This expression is linear in I" as it has to be to reflect the lin-

earity of the scalar equation. Linearity in S is not mandatory
since the Navier Stokes equation is not linear; if linearity in
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Figure 9: The K ~23/9 scaling (21) for the horizontal heatflux
spectrum tested in the range 32 < Ry < 10% at St = 0.5.

S is assumed, (15) reduces to the Wyngaard and Coté (1972)
formulation:
FuG(K)NFSK_37 (16)

This formulation can also be found by assuming

‘Puw(K)

Fyug(K) ~ E(K)

Fuye (K) (17)
and using (1) to express Fy,9(K) and a classical expression for
the @y (K) spectrum:

Ouw(K) ~ Se(K)V/3K=T/3, (18)

If one uses a tensorial extension of (1):
GLe) _
Fyg(K) ~ 6—6,-]-(1()1/3}( 3, (19)
Zj

and expresses €yq (K) by arguments similar to the ones leading
to (18):
uw(K) ~ Se¥/3K—2/3 (20)

it is found:
Fug(K) ~T8Y/3e2/9—23/9 (21)

a scaling which is in good agreement with the present EDQNM
results, figure 9, and the results of atmospherical measure-
ments leading to n,s ~ 2.5.

CONCLUSION

The EDQNM theory was used to study the Reynolds num-
ber dependency of the scalar flux spectrum in both isotropic
turbulence and homogeneous shear flow. In isotropic turbu-
lence, the asymptotic inertial range behaviour is in agreement
with classical predictions and a K~7/3 scaling is found. This
scaling is however only found for very high Reynolds numbers
and at Reynolds numbers corresponding to laboratory exper-
iments, the spectral exponent is found to be closer to —2 as
observed in the experiments of Mydlarski and Warhaft (1998).

The horizontal scalar flux spectrum in homogeneous shear
flow is shown to behave differently from classical predictions.
An asymptotic K —23/9 pehavior is observed in agreement with
experimental observations. An asymptotic analytical form
compatible with the observations is proposed.

This paper illustrates the role that two-point closures can
still play in turbulence research. At low Reynolds number



their results agree with DNS. Their low computational cost
allows to perform calculations at very high Reynolds numbers
where dimensional analysis at asymptotically high Ry can be
tested. At intermediate values, good agreement is observed
with laboratory experiments and the gap between wind-tunnel
measurements and atmospheric measurements can be bridged.
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