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ABSTRACT

This is a progress report which includes some speculations
as well as solid results concerning, in particular, the correlation
between the clustering of inertial particles and the clustering
of peristent stagnation points in statistically isotropic and ho-
mogeneous turbulent fluid flow.

1. INTRODUCTION

In many environmental, geophysical and industrial pro-
cesses, inertial particles or droplets interact with turbulent
flows to generate complex dispersion patterns and concentra-
tion fluctuations which can, via an agglomeration process, lead
to precipitation in clouds and powders in the chemical and
pharmaceutical industries. Fluctuations in particle concentra-
tions are also responsible for large variations in the efficiency
of various industrial processes and characterise air pollution
in cities and elsewhere.

Here, we consider small aerosols or droplets (e.g. cloud
droplets) in gases or small inertial particles in water subjected
to linear Stokes drag and gravity. The particles/droplets are
assumed spherical with a radius smaller than the smallest
length-scale of the turbulence and a density much larger than
that of the ambient fluid. The equation of motion of such par-
ticles is well approximated by %v = % [u(xp,t)—v(xp,t)|+8g
where v(xp, t) is the velocity of the particle/droplet at its po-
sition xp(t) at time ¢, u(x,t) is the fluid velocity field, g is
the gravitational acceleration and 7, is the particle relaxation
time. We also assume that the particles do not significantly
affect the fluid turbulence. A central concern in this paper is
inertial particle clustering.

We simulate 2D inverse cascading turbulent velocity fields
u(x,t) by Direct Numerical Simulation (DNS) following the
method detailed in Goto & Vassilicos (2004) which gives a
well-defined —5/3 energy spectrum. We also simulate 2D and
3D turbulent velocity fields by Kinematic Simulation (Fung
& Vassilicos 1998, Osborne et al 2005). The emphasis is on
high Reynolds number turbulence with well-defined power-law
energy spectra, which is why we are concentrating on KS and
2D DNS. Recent results on inertial particle clustering obtained
with 3D DNS have been reported by Collins & Keswani (2004).
Instead of Reynolds numbers, we will be refering to outer- to
inner-length scale ratios L/n where L is the integral length
scale in our DNS but the length-scale corresponding to the
smallest wavenumber in our KS and 7 is the small-scale forcing
length-scale in our DNS but the length-scale corresponding
to the small-scale end of the power-law energy spectrum in
our KS. The corresponding outer- to inner-time scale ratio
is T/m,. Inertial particles are characterised by their Stokes
number St = 1, /7.
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2. BRIEF DETAILS OF SIMULATIONS

Full accounts of our simulations can be found in the papers
referenced in the previous paragraph. Here we just state that
we are experimenting with 2D DNS turbulence that has a
well-defined k= 3 energy specrum and L/n = 30 (T/m, = 25)
by using 40962 grid points; and that our KS velocity fields
have power-law energy spectra E(k) ~ kP in the range of
wavenumbers 27 /L to 27/n and no energy outside this range;
p = 5/3 in all 2D KS fields considered and various values
of p between 1 and 2 are tried in our 3D KS fields. The
time dependence of the KS velocity fields is determined via
the frequencies w(k) = A\/k3E(k) where X is a dimensionless
parameter controlling the intensity of the time dependence of
the fluid velocities. L/n = 10% (except when a dependence on
L/n is sought) and, when p =5/3, T/, = O(100).

In all our 2D simulations and most of our 3D simulations,
g = 0. Some cases with non-zero gravity for 3D KS are re-
ported at the end.

3. THE STOKES NUMBER AS LOW-PASS FILTER

Our DNS visualisations show that inertial particle posi-
tion fields starting from initial uniformity develop well-defined
near-empty spaces as time progresses (see figure 1). The loca-
tions of these near-empty spaces at given integration times are
the same for different Stokes numbers and are characterised
by high enstrophy values (e.g. see Crowe et al 1996). The
sizes of these empty spaces increase with Stokes number un-
til 7, becomes comparable to 1" at which value of St these
sizes saturate, with some signs of decreasing as St grows above
T/7y. This visual observation can be quantified in terms of the
coarse-grained enstrophy w? averaged over all particle trajec-
tories, < wf >p compared to its Eulerian average over space,
< w? > (see figure 2). The coarse-graining of the fluid ve-
locity field is effected in wavenumber space by a sharp cut-off
low-pass filter with cut-off wavenumber k.. For each Stokes
number, the ratio < w? >, / < w? > depends on k. and
has a minimum at k. = kp where, for 1 < St < T/7y, kp
scales as kpn ~ St=3/2. This scaling is a consequence of the
low-pass filtering effect of the particle relaxation time, i.e. the
only wavenumbers which affect the particle motion are those
smaller than kj, where 7, ~ (k:;’;E(k:p))’l/2 (Tchen 1947).
The effect of this filtering on the demixing of inertial particles,
which is here measured by values of < w? >, / < w? > smaller
than 1, is characterised by the length-scale 27 /k;, which we
take to be a measure of the size of near-empty regions.

However, as St decreases further below 1, the previous
paragraph does not explain what it is that these near-empty
spaces and their sizes are determined by.



4. CLUSTERING AT STOKES NUMBERS SMALLER THAN
1

In approximate agreement with the 3D DNS of Collins
& Keswani (2004), we find < w? >, / < s >p~ 1 for
0.1 < St < 1 in our 2D DNS (w and s are the vorticity and
the strain rate tensor respectively). If there is a dependence
on L/n, we are unable to see it in our DNS (and we have ac-
tually run DNS cases with less grid points and smaller values
of L/n than stated in section 2). However, in our 2D KS,
< w? >, / < s? >, increases towards 2 as L/n increases to-
wards high values, irrespective of the values of St < 1 and A
(see figure 3). This value 2 might suggest spatial uniformity
because, in homogeneous turbulence, < w? > / < 82 >= 2.
However, such uniformity is not observed in 2D KS visualisa-
tions (see figure 4) when X is small enough, even at our highest
values of L/n, though it is observed when A >> 1. This raises
the issue of the persistence of turbulent eddies, controlled by
A in KS, and the impact of this persistence on particle clus-
tering. Before addressing this issue, we briefly discuss particle
compressibility.

Following Falkovich & Pumir (2004), we note that for St <
0.3, v & u— mpa where a is the fluid acceleration field. Hence,
the particle compressibility Vv &~ —7,V-a = —7,(s% — %wz).
Averaging over particle trajectories, < V-v >px —7p(< 82 >p
—% < w? >p). Our 2D KS results suggest that, in the limit
L/n — o0, < V-v >,= 0, whereas our 2D DNS results, if
they are extrapolated to mean that < w? >,~< s? >, and
< w? >, / < w? >=1/2 independently of Reynolds number,
imply that 7 < V-v >p~ —St. The absolute value of the
particle compressibility is an inverse time-scale 7. which might
be interpreted to be the time-scale required for the formation
of near-empty spaces in the spatial distribution of inertial par-
ticles. It might be interpreted that these near-empty spaces
grow within a time-scale 7. ~ 7,/St to a size of order n (we
provide evidence in section 6 for this size n) when St < 1 but
that they grow to a certain size 2m/k;, defined by the relax-
ation time’s filtering action when St > 1. We are currently
running 2D DNS and 2D KS time-marching visualisations to
validate or invalidate this interpretation. It might be worth
noting here that we find < w? >, / < s >,= 2 both in 2D
DNS and 2D KS when St > 1 in all cases of L/n and A that
we tried, even though near-empty regions are observed in all
DNS cases and all KS cases except those where A is too large.

The 2D KS results are in disagreement with elements of
this picture as figures 3 and 4 testify but also highlight the
importance of persistence of turbulence “eddies”. The dis-
agreements between our 2D KS and our 2D DNS are probably
due either to the lack of explicit sweeping of small eddies by
large ones in the modelling of KS or by the relatively modest
values of L/n in DNS (or both). We do not know the answer
to this question at this stage, but we do provide some elements
for partially addressing it in section 6.

5. PERSISTENT STAGNATION POINTS

“Eddies” are an undefined concept, so here we focus atten-
tion on the stagnation points of the fluid velocity field u(x, t),
of the fluid acceleration field a(x,t). In this, we follow the ap-
proach of Fung & Vassilicos (1998), Davila & Vassilicos (2003),
Goto & Vassilicos (2004), Goto et al (2005) and Osborne et al
(2005) who showed that velocity stagnation points do impact
on turbulent pair diffusion by virtue of the strong curvature of

streamlines in their vicinity as they turn out to be persistent
enough in time in a statistical sense which they define. Here
we discuss how the statistics of persistent stagnation points
can also impact on particle clustering.

The number-density of zero-acceleration points scales as
(L/n)¢ (d = 2,3 for 2D and 3D respectively) whereas the
number-density of zero-velocity points (irrespective of frame
of reference) scales as (L/n)Ps where p + 2Ds/d = 3 (Davila
& Vassilicos 2003, Goto & Vassilicos 2004). There is therefore
many more zero-acceleration points than zero-velocity points
and Goto et al (2005) have argued that, typically, zero-velocity
points in the frame of reference where the mean fluid flow
vanishes, tend to become nonmoving zero-acceleration points.
The persistence of these points is partly reflected in that, as
a consequence, %u = 0 at these points in that frame. Fur-
thermore, Osborne et al (2005) present an argument showing
that these points are long lived as their average life-time scales
with the integral time scale. The remaining zero-acceleration
points are not zero-velocity points.

For St < 0.3, v & u — 1pa and %v = Tip(
that persistent zero-acceleration zero-velocity points are also
points where particle velocities and particle accelerations typ-
ically vanish. We might therefore expect these points to be
“sticky” in the sense that particles will cluster in their vicin-
ity. Furthermore, the clustering of inertial particles might, to
some extent, reflect the clustering of these points. We address
this dual clustering issue in the following section.

u—v), so

6. PAIR CORRELATION FUNCTIONS IN 2D DNS AND 2D
KS TURBULENCE

Generalised fractal dimensions of the spatial distributions
of inertial particles turn out to be equal to 2 in all our 2D
turbulence simulations for all orders of generalised fractal di-
mensions (we tried up to order 128) (see Hentschel & Procaccia
1983 for the definition of generalised fractal dimensions). The
reason is that the near-empty spaces contain enough particles,
even if they are extremely dilute, for the fractal dimensions
of their spatial distribution to be taking space-filling values.
Clearly, a different measure of clustering is required. Here we
use pair correlation functions which are simply related to the
radial distribution function (Sundaram & Collins 1997) and
the clustering index which is popular in analyses of observa-
tional data of atmospheric clouds (Kostinski & Jameson 2000,
Kostinski & Shaw 2001, Shaw et al 2002). The use of the
pair correlation function is based on the correlation fluctua-
tion theorem (Landau & Lifshitz 1980). This theorem states
that if a grid of grid-spacing [ is superimposed on a spatial dis-
tribution of points, then the average pair correlation function

m =1

0 m(r)dr is given by

_ < (6N)2 >; 1
m(l) = 5 —
<N >2 < N >

where N is the number of points in each box, < N >; the
average number of points over all boxes and < (§N)? >;=<
(N— < N >)2 >; (where the average is taken over all boxes
of size 1). To educe average pair correlation functions of spa-
tial distributions of inertial particles, zero-velocity points and
zero-acceleration points from our turbulence simulations we
use this theorem and effectively calculate the right hand side
of the above equation which is the clustering index divided by
< N >;. This right hand side is zero for Poisson spatial dis-
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tributions and can be shown to scale as I~/ for homogeneous-
fractal spatial distributions (see Hentschel & Procaccia 1983
for a definition of homogeneous fractals) with I = d— Do where
Dy is the lowest order generalised fractal dimension (i.e. the
usual box-counting fractal dimension). It is important to point
out that a power law m(l) ~ [~ is an indication of a multi-
ple size structure of near-empty regions except when I = 1,
in which case the pair correlation function m(r) is a constant
different from zero up to a certain length-scale (which char-
acterises the size of near-empty regions) and equal to 0 for r
larger than this length-scale. Increasing values of (1) reflect
increasing clustering.

Such a well-defined power-law is indeed observed both in
2D DNS and in 2D KS with X small (L/n = 10% and A =
0.5) when St < 1, with I tending to 1 as St — 0 in both
cases. The exponent I decreases as St increases towards 1
but decreases only by about 10% for St smaller than about
0.5, and so remains close to 1. For all intents and purposes,
m(r) = 0 for r > n and m(r) # 0 for r < 1 in our DNS
(and also in KS as some preliminary results seem to indicate)
when St < O(1) (see figure 5), hence supporting the view
(see section 4) that the near-empty spaces grow to be of order
n in size. We also note that m(l) and m(r) calculated for
snapshots taken at the same time increase as St tends to 1
from below (i.e from values smaller than 1) both in KS and
in DNS (m(r) is obtained from differentiation of m(l)). This
observation is in agreement with the claim made in section 4
for our 2D DNS turbulence that near-empty spaces of size n
form within a time-scale 7. ~ Tn/St, i.e. that it takes longer
for these near-empty spaces to reach their final size 7 when St
is smaller. We are currently checking this claim in DNS and
KS. Even though this qualitative observation is also valid in
KS, it is a bit harder to explain because in KS < V-v >,— 0
as L/n — oo and 75 * cannot be defined as | < V-v >, |. We
are currently investigating the behaviour of (< V- v >,)? in
KS as a function of St, L/n and A.

As St increases above 1 towards T/7,, the values of m(l)
continuously decrease both in KS and DNS and there is again a
critical size r« above which m(r) ~ 0 (i.e. for » > r) which is
larger than n and continuously increases with St, generating
the impression that r.« is determined by the low-pass filter
wavenumber kj, discussed in section 3. However, we have not
yet verified this hypothesis quantitatively.

Maximum clustering in the sense of maximum values of
m(l) (but also directly observed on plots of inertial particle
distributions in space) occurs at St &~ 1. The time scale 7«
required to generate near-empty spaces of size r is 7. ~ 7,/St
for St sufficiently smaller than 1 (in which case 7« = n) but is
(kgE(kp))*l/2 ~ T, St for St larger than 1 (in which case r« =
2 /kp). Hence, this time scale 7« is minimal at St ~ 1 which
might explain the observation that clustering is maximal at
St~ 1.

In figure 6 we plot the pair correlation functions m(r) of
zero-acceleration points and zero-velocity points (in the frame
where the mean fluid flow is zero) obtained from our DNS
(similar calculations are currently being carried out for KS.
Zero-velocity points are more clustered than zero-acceleration
points as the pair correlation functions (and therefore also
m(l)) of the zero-velocity points are larger by one order of
magnitude than those of zero-acceleration points. Following
the suggestions of section 5, we plot the pair correlation func-
tion of inertial particles for a case of near-maximum clustering
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(St = 1.9) obtained at a time significantly larger than T
and find that it coincides quite closely with the pair corre-
lation function of zero-acceleration points (see figure 7). In
figures 8 we visualise side by side the spatial distribution of
zero-acceleration points and the spatial distribution of inertial
particles to reveal the remarquable spatial correlation which
exists between these two spatial distributions over a range of
spatial resolutions. All the results mentioned in this paragraph
have been obtained for DNS; the corresponding KS calcula-
tions are currently under way.

How do these results square with the suggestion of section
5 that, in the limit L/n — oo, inertial particles “stick” around
persistent zero-velocity zero-acceleration points? To answer
this question, we now argue that for large enough values of
L/n, inertial particles stick around zero-acceleration points
and move with them, but that as L/n increases towards very
high values, some of these zero-acceleration points tend to
identify with zero-velocity points and as a result move slower
and slower in the frame where the mean fluid flow is zero,
thus becoming increasingly persistent in that frame. The per-
sistence of these points becomes an essential ingredient in the
clustering of inertial particles in the limit L/n — oo.

Our argument, which we now sketch, is valid for St < 0.3,
but our numerical results indicate that its conclusions may be
valid more widely. Generalising the approach of Goto et al
(2005) and Osborne et al (2005) to zero-acceleration points,
we define these points sq(t) by a(sq(t),t) = 0, their velocity
by V, = %sa(t) and write

D
Ea—l—(Va—u)-Vu:O

at these points, where Dgt is the Lagrangian time derivative
following fluid elements and u is the fluid velocity at sq(t)
at time t. Assuming that (Vo — u) and Vu are statistically

uncorrelated, we deduce that
2 _1/2 D 2 _1/2
<|Vg—ul® >""~< lHta| >2 1.

where we reasonably assume Kolmogorov scaling for veloc-
ity gradients. Such scaling implies that < \Dgta\z >1/2~
(u'3/L?)(L/n)~1, where v’ is the r.m.s. turbulent fluid ve-
locity, which in turn implies

< (Vo —u)?2 >Y2~ ! (L/n)~ /3.

The important consequence is that < (Vo —u)? >1/2 /u/ — 0
as L/n — oo, meaning that in the limit of high Reynolds
numbers, zero-acceleration points move with their local fluid
velocity u. This conclusion can be seen as a quantitative for-
mulation of the Tennekes sweeping hypothesis which states
that energy containing turbulent eddies advect small-sale dis-
sipative turbulent eddies (see Goto et al 2005 and references
therein).

For St < 0.3, v ® u — 1pa and %v = %
that, when L/n > 1, an inertial particle at a zero-acceleration
point moves, on average, with this zero-acceleration point be-
cause they both move, statistically, with the same velocity
u. Furthermore, the acceleration %v of an inertial particle
at a zero-acceleration point is zero, thus reducing the parti-
cle’s ability to escape from the zero-acceleration point. This
conclusion goes some way in explaining why the spatial clus-
terings of zero-acceleration points and of inertial particles are

(u—v) so



so well correlated in our DNS calculations where L/n = 30.
As the Reynolds number of the turbulence increases we ex-
pect inertial particle clustering to increasinly correlate with a
subset of zero-acceleration points, namely the subset of per-
sistent zero-velocity zero-acceleration points, and we present
some evidence to this effect in the following section.

Let us end this section by noting that the validity of the
scaling relations leading to these conclusions, in particular
< |V —ul?2 >12~¢ |%a|2 >1/2 /7, is currently being
investigated by well-resolved 2D DNS and KS. Preliminary
results not included here support our conclusions.

7. PAIR CORRELATION FUNCTIONS IN 3D KS TURBU-
LENCE

Values of the average pair correlation function of inertial
particles turn out to be orders of magnitude larger in 3D KS
with small values of A (we have experimented with (small)
A = 0.5 and (large) A = 5) than in our 2D turbulent flows.
Furthermore, they exibit very well-defined power laws of the
grid-spacing [ over a wide range of scale (note that here L/n =
103), particularly for St < 1 (see Figure 9). In the case St < 1,
we have checked that this power law is the same for all St tried
between 0.1 and 1.0 and for both cases Fr = gL/u’? = 0 and
9.8. We have also checked that our algorithms give uniformly
vanishing average pair correlation functions when St = 0, but
have not yet investigated what happens at extremely small
values of St, i.e. between 0 and 0.1.

As St increases above 1 and towards T/7, (and keeping
A = 0.5), the average pair correlation function of inertial
particles decreases for all grid-spacings [ but does so whilst
apparently keeping a sufficiently well-defined power law of [
with an exponent that is a decreasing function of St; in fact
this exponent tends to 0 as St — T’/ (see Figure 10). When
A is given large values these properties of the average pair core-
lation of inertial particles are lost and 7, (l) collapses to very
small values (the subscript p indicates inertial particles). This
dramatic dependence on A illustrates the importance that the
persistence of the fluid turbulence has for the particle cluster-
ing.

To find whether, in the case A = 0.5 of 3D KS turbu-
lence with persistent properties, there is a correlation between
the clustering of inertial particles and the clustering of zero-
velocity points in the frame where the mean fluid flow is zero
(as predicted in sections 5 and 6), we plot the average pair
correlation functions of zero-velocity points, ms (1), and of in-
ertial particles with St = 1 for different values of the exponent
p of the energy spectrum (see Figures 11 & 12). The result is
ms(l) ~ 1's and My (1) ~ I!» with I, —p and Is —p both equal
to a constant as the exponent p varies. This indicates a clear
correlation which relates to the fact that as p increases from 1
to 2, the total number of stagnation points per unit volume de-
creases as ns ~ (L/n)973P)/2 (see Davila & Vassilicos 2003)
from ns ~ (L/1)3 to ns ~ (L/1n)32. Less number density
of stagnation points is not inconsistent with more clustering
of stagnation point but is definitely consistent, according to
our arguments in the previous sections, with more clustering
of inertial particles. Indeed as p increases from 1 to 2, myp (1)
increases too across the [-range, thus indicating increased clus-
tering.

8. CONCLUSION

We have argued that zero-acceleration points and inertial
particles are correlated and cluster together at least for small
enough Stokes number and high enough values of L/n, and
we have presented preliminary results from turbulence sim-
ulations supporting this view. We have also argued that in
the limit of very high Reynolds numbers, the clustering of
inertial particles is determined by persistent zero-velocity zero-
acceleration points and have presented supporting results from
3D KS which also suggest that the average pair correlation ex-
ponents I, (of inertial particles for small enough St) and I (of
zero-velocity points) are close to each other irrespective of the
exponent p characterising the energy spectrum E(k) ~ k~P,
i.e. Ip — Is is independent of p.
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Figure 1: Particle distributions in 2D DNS turbulence for
three different Stokes numbers; (a) St = 0.1, (b) 0.8 and (c)
6.4. The entire periodic domain is shown.
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Figure 2: Average of the coarse-grained vorticity with cut-off
ke at the postion of inertial particles (e, St = 0.1; o, 0.8; X,
6.4.)

73

(o))
o

Un

Figure 3: < w? >, / < s? >, for KS with A = 0.5. Larger
values of A lead to faster convergence towards 2.

Figure 4: Particle distributions in 2D KS turbulent field. St =
1.0, L/n = 1000, A = 0.5, Box size is 10L.
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Figure 5: Correlation function m(r) of inertial particles (St =
0.4). 2D DNS.
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Figure 6: Correlation function m(r) for zero-acceleration
points (e) and for zero-velocity points (o). 2D DNS.
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Figure 7: Correlation function m(r) for inertial particles (St =
1.9, o) and zero-acceleration points (e). 2D DNS.
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Figure 8: Distribution of (a) inertial particles (St = 1.6) and
(b) zero-acceleration points. 2D DNS. The figure size equals
about four integral length scales.
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Figure 9: Average pair correlation functions for inertial parti-
cles in 3D KS with —5/3 spectrum, A = 0.5.

Meal)

me(1)

102

107

0.001

Figure 10: Average pair correlation functions for inertial par-
ticles in 3D KS with —5/3 spectrum: a) A = 0.5, b) A = 5.
Fr =0. A comparison is included with results from a Poisson
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Figure 11: Average pair correlation functions for zero-velocity
points in 3D KS with A = 0.5 and various values of p. Inset

depicts the exponent I as a function of p.

0.100

-2.0

107°

1.0 1.2 1.4 16 18 20
I

0.001

Figure 12: Average pair correlation functions for inertial par-
ticles with St = 1 in 3D KS with A = 0.5 and various values
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of p. Inset depicts the exponent I, as a function of p.

74





