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ABSTRACT

Static pressure fluctuations are an important ingredient in
turbulence, e.g. in the pressure strain terms which redistribute
turbulence among the different fluctuating velocity compo-
nents. In the present study, both mean and fluctuating static
pressure and wall pressure have been measured simultaneously
in turbulent boundary layers. The pressure inside the bound-
ary layer is measured with a specially designed probe. Results
on mean and fluctuation distributions, spectra, Reynolds num-
ber dependence, and correlation functions are reported.

INTRODUCTION

There is an immense body of literature on the behaviour,
distribution and scaling of velocity fluctuations in boundary
layers, however so far very little is known about similar be-
haviour of pressure fluctuations. With regard to understand-
ing the dynamics of turbulence such results are necessary, we
only need to point out the importance of the pressure-strain
terms which determine the redistribution of energy between
the various velocity components. The main reason for the lack
of such results is of course that no measurement technique
so far has been able to actually measure pressure fluctua-
tions inside the boundary layer. Recently Tsuji and Ishihara
(2003) demonstrated the use of a specially designed probe
which allows measurement of pressure fluctuations also inside
a turbulent flow. In the present work we present new results
obtained with similar probes which seem to be able to ac-
curately measure not only the mean static pressure but also
pressure fluctuations inside the turbulent boundary layer.

EXPERIMENTAL CONDITION

The experiments are performed in the MTL (Minimum Tur-
bulence Level) wind tunnel at KTH. This is a high quality
flow tunnel with a streamwise turbulence intensity of less than
0.025% at a free stream speed of 25 m/s and a total pressure
variation less than 0.06% across the test section (see Lind-
gren, 2002 for further details about the MTL wind tunnel).
The present experimental conditions are matched with those
of Osterlund (1999) which cover the Reynolds number range
2600 < Ry < 26700.

The measurement station is set at 5.5 m from the leading
edge. A specially designed traversing system protruding from
the plate is used to position the probes. The probe position
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Figure 1: Schematic view of static pressure probe.

is changed in the range of 0 <y < 120 mm.

The measurement of pressure fluctuation in the flow field is
accomplished with both a small piezo-resistive transducer and
a standard quarter-inch condenser microphone. The trans-
ducer has a frequency response from D.C up to 150 kHz with
a dynamic range of 3.5 x 10° Pa. The maximum errors con-
tained in linearity and hysteresis are 0.25%. A microphone
is available for measuring the frequency from 20 Hz up to
70 x 103 Hz. The lower frequency is restricted due to its me-
chanical system. The dynamic range is 2x 102 ~ 3.2x 103 Pa,
so a very small amplitude can be measured. The probe is a
standard Pitot-static tube measuring ¢2 mm in inside diam-
eter as indicated in Fig. 1, whereas the wall thickness of the
tube is A = 0.05 mm.

Four static pressure holes (¢1 mm in diameter) are spaced
90° apart and located at a distance of L1 from the tip of the
probe to minimize sensitivity to cross-flow error. The leeward
end is terminated by the microphone or the transducer. The
sensor diameters are dr = 1.6 mm and dp; = 7.0 mm for the
transducer and microphone, respectively. The transducer can
detect low-frequency pressure fluctuations, but its sensitivity
is fairly low, giving a measurable amplitude larger than 10 Pa.
The microphone on the other hand can detect very small am-
plitudes, but frequencies below 10 Hz cannot be measured. In
this experiment, five different tube diameters are used, listed
in Table 1.

The fluctuating wall-pressure is measured by various config-
urations involving a pinhole in the boundary surface and by a
piezoelectric transducer having a sensing element of the same
diameter as the pinhole. According to Bull (1996), measure-
ments are classified as (1) a condenser microphone mounted
in a cavity behind the surface pinhole, (2) a piezo-electric
transducer mounted behind the pinhole, (3) a piezo-electric



Table 1: Static tube and pinhole size.

1 o2 In Lo L3
probel 0.2 1.0 225 475 30.0
probe2 0.15 0.5 155 275 16.0
probe3 0.2 0.7 155 275 185
probe4d 0.4 1.0 225 475 300
probeb 0.3 1.0 225 475 30.0

transducer mounted behind the pinhole, but with no cavity,
(4) a piezo-electric transducer mounted behind the pinhole
(with no cavity), but with the pinhole filled with silicone
grease to restore a continuous boundary surface, (5) a piezo-
electric transducer mounted flush with the boundary surface
with no surface discontinuity. Analyzing the previously re-
ported results, he concluded that the pinhole is responsible
for local flow disturbances, which leads to errors in measured
data. However, Farabee and Casarella (1991) concluded that
pinhole sensors are effective for wall-pressure measurements.
Thus, this problem appears to quite equivocal. Keith et al.
(1992) pointed out the effect of sensor spatial resolution is of
primary importance. In the present study wall pressure fluctu-
ation is measured by techniques (1), (2), and (3). The pinhole
diameter is d = 0.3 mm and its depth is £ = 1.0 mm.

The streamwise velocity is measured by a single hot-wire
operated in the constant-temperature anemometer mode. The
hot-wire probe can be traversed to a minimum distance of
1.0 mm from the pinhole of the static pressure probe. The
streamwise velocity and the static pressure are measured si-
multaneously. Also, the correlation between the static pres-
sure and the wall pressure at different locations in the bound-
ary layer is measured for several Reynolds numbers.

CALIBRATION OF STATIC PROBE

Yaw angle effect

The probes were inserted into the flow domain in such a
way that the axis of the microphone (or the transducer) itself
is aligned with the mean flow. We have preliminarily checked
how the angle between the pressure probe and the flow direc-
tion affects the measured data. For this study the static probes
were set in the potential core on the centreline of a round jet.
The initial jet velocity is U; = 10 m/s, and the probe is ro-
tated within —20 < 6 < 420 degrees. The mean pressure
is measured by a manometer (dynamic range is 50 Pa). The
pressure coefficient defined as

Cp = (Py — Po) /50U3, (1)

is plotted against the yaw angle in Fig. 2. Here, Py is the mean
pressure at angle € and Py is the mean pressure for § = 0. In
the range of £5 degrees, the absolute value of C'p does not
change with more than 0.001 for all probes used.

Mean pressure calibration

A mean pressure calibration of the probes is performed as
follows. A Prandtl tube and the static probe are set par-
allel with each other in the potential core of a jet. Tygon
plastic tubing, 2 m in length, is connected to the outlets of
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Figure 2: Yaw angle effect for static pressure probe.

both probes. The pressure difference between these, AP, is
measured by a manometer with a dynamic range of 50 Pa. As
plotted in Fig. 3, AP is very small for speeds less than 10 m/s
but it is not negligible when Uy is larger than 20 m/s. For the
probe with a diameter of ¢2 = 1.0 mm the smallest orifice size
makes AP negative, but the pressure difference becomes pos-
itive for the largest one. On the other hand, for the smallest
probe 2, the pressure difference indicates the largest positive
value. This indicates that AP might be a function of both the
static tube size and the orifice size. Also, the 2 m long plastic
tubing, which connects the static tube with the manometer,
may have some influence.

The mean pressure profiles measured with all five probes
across the boundary layer are shown in Fig. 4 for Ry = 10460.
The measured pressure distributions collapse fairly well for all
probes when the correction as mentioned above is made.
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Figure 3: Pressure difference, AP, between the static pressure
tube and the Prandtl tube.
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Figure 4: Static pressure distribution through the boundary
layer measured with the five different sized probes.

Pressure fluctuation calibration

The probe is calibrated for measurements of static pres-
sure fluctuations in the manner described below. The pressure
probe is positioned parallel to the reference microphone and
pressure fluctuations generated by a speaker are picked up by
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Figure 5: Illustration of the effect of removal of the HR. See
text for details.

these two probes simultaneously. The output signal from the
pressure probe, ps(t), differ however from the signal, pr(t),
measured by the reference microphone. This is probably be-
cause of the attached static pressure tube and the Helmholtz
resonance. Although the size of the pressure tube is small,
this may also give a small effect on the measurement.

The frequency response of the system is limited by
Helmholtz-resonator (abbreviated as HR) responses of the
tube and sensor cavity (Kobashi, 1957, Toyoda, 1993). This
HR frequency is calculated by

Us S
fr= w\ v (2)
where V' is the cavity volume, L3 is the tube length, Us is
the speed of sound and S is the cross section (see also Fig. 1).
For instance, with V = 7d?L./4 m® and S = 7(¢2)?/4 m? the
resonant frequency is 2.5 kHz and 11.1 kHz for the microphone
(d = 7.0 mm, ¢2 = 1.0 mm, L3 = 18.5 mm) and transducer
(d = 1.6 mm, ¢2 = 1.0 mm, Lz = 18.5 mm), respectively.
Using the phase difference and the amplitude ratio between ps
and pr in Fourier space, HR is numerically removed from p;.
A typical example is shown in Fig. 5. Although the original
fluctuation ps differs significantly from p,, once the effect of
HR is removed, those signals match each other excellently.

A standing wave inside the pressure probe may also cause a
small disturbance to the pressure fluctuations. The frequency
of the standing wave is given by fs = Us/As where A\s/4 = L3
and fs is about 7.1 kHz for probe 1. The spatial resolution is
estimated to be a few times the tube diameter. Then the cor-
responding frequency, f. = U./(n X d), is taken into account
in the measurements. Here, U, is the local mean velocity, d is
probe diameter, and n is to be from 2 to 5. f. is the order of
10.0 kHz at U, = 20.0 m/s.

Background noise

It is always difficult to achieve accurate measurements of
pressure beneath the turbulent boundary layer due to sig-
nal contamination resulting from facility induced noise. For
low Reynolds numbers, these acoustic disturbances, generally
lower than 100 Hz, dominate the signal, however, noise con-
tamination may be simply neglected when measurements are
made at sufficiently high Reynolds numbers since the turbu-
lent pressure fluctuations overwhelm the low-frequency distur-
bance.
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The static pressure measured at y = 120 mm from the wall,
ps(t), and the wall pressure fluctuation py, (t) are analyzed in
order to evaluate the background noise. In this experiment,
the boundary layer thickness is 65 mm at most. Therefore, the
location y = 120 mm is twice the boundary layer thickness,
and it is so far from the wall that there may be no correlation
caused by turbulence between them. If ps and p,, contain the
same low frequency noise, they are divided as

Ps(t) = p () + po(t) , pu(t) = piy, () + Po(t) 3)

where py(t) is a background noise due to acoustic noise and
vibrations. p} and p!, are expected true pressure fluctuation.
The correlation function is calculated as

(pspw) = (Pip) + (PE) - 4

because of the independence of p, on the turbulent statis-
tics. We can suppose (p),p’,) ~ 0, because the static pressure

is measured at y ~ 2§. Then the root mean square of the

background noise is pp rms = 4/ <p§> ~ \/(PsPw)- Pb,rms i-

creases as a function of Reynolds number like py, ypms o< Ré‘gg.
When it is normalized by inner variables, py rms/ pu? decrease
as Reynolds number increases and asymptotically approach
the constant value of 0.7.

The frequency spectrum of ps is shown in Fig. 6. It is
noted that the low frequency noise appears smaller frequen-
cies than 100 Hz. The sharp peak around 300 Hz may be
caused by the acoustic noise emanating from the wind tunnel
fan. It is concluded, therefore, that the low frequency noise
contaminates the measured signal in the low frequency region,
f < 20 Hz. In the high frequency region, say in the inertial
range and in the dissipation range, acoustic noise effects are
small. According to Kolmogorov’s ideas turbulence at large
Reynolds numbers has a spectrum which exhibits a simple
form with the familiar —5/3 law for the velocity fluctuations
in the inertial subrange. The corresponding exponent for the
pressure spectrum becomes —7/3. The —7/3 power-law scal-
ing was supported theoretically with various assumptions in
the 1950’s by Batchelor (1952), Inoue (1951), and Obukhoff &
Yaglom (1953). Recently, Tsuji & Ishihara (2003) have exam-
ined the pressure spectrum in fully developed turbulence. In
the spectra presented in Fig. 6 we cannot observe a substan-
tial inertial range. The slope of the line in the figure is —1.5.
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Figure 6: Static pressure spectrum measured in the boundary
layer at y = 20 mm and in the free stream region, y = 120 mm.
Slope of solid line is —1.5.



The reason for this may be that the Reynolds number is too
low in order to have a substantial inertial range. Future work
aims to clarify this issue.

We also compute the correlation function with time lag 7,
(ps(t + 7)pw (¢)). If the Taylor hypothesis is adopted, it indi-
cates the correlation between wall pressure and the static pres-
sure at a distance Ug X 7 upstream from the wall pinhole. The
correlation coefficient Cr = (ps(t + 7)pw (t)) /(Ps,rmsPw,rms)
decreases and it is almost zero for large separation distance,
2.0 m < 7Up. Thus, the low frequency noise is associated with
motions of a few meters in space.

RESULTS AND DISCUSSIONS

Mean pressure profile

The mean pressure distribution measured by probel is plot-
ted in Fig. 7. The distance from the wall, y, is normalized by
Rotta-Clauser boundary layer thickness A, and the pressure
in the boundary layer P(y) is subtracted from the pressure in
the free stream region. That is, P(y) is always smaller than
FPpy. Note here that the mean pressure is affected by the wall
up till y ~ 0.3A and that the peak of APy; = Py — P is lo-
cated around y ~ 0.05A. The boundary layer thickness, 9, is
roughly evaluated to be 0.2A, and it is then concluded that
the mean pressure effect remains far from the wall. It is similar
to the vertical-component velocity characteristic.

The boundary layer momentum equation normal to the
plate shows that the mean static pressure P(y) varies with
the distance from the wall (y) as

Py)/p=Po/p— (v*), (5)

where Py is the mean pressure in the free-stream and v is the
velocity fluctuation component normal to the plate. The rms-
distributions of the normal velocity calculated from the above
relation, normalized by inner variables are plotted in Fig. 8.
The normalized fluctuation level, 4/ {(v2)/u,, is slightly larger
than what is expected from direct v-measurements but the
profiles are quite similar (cf. Osterlund, 1999). This dis-
crepancy can, however, be explained by the uncertainty of
APy ~ O(10™1) Pa. Also, the calibration curve is only to
evaluate the relative errors. There is still an uncertainty of
how accurately the Prandtl tube pick up the mean static pres-
sure. Possible effects of plastic tubing connected to the outlet
is also not considered here. If the peak position of 4/ (v2)/ur
is expressed as y;' , its Reynolds number dependence is plot-
ted in the inset. The peak position is scaled by the relation,
y4 = 0.00135 x R}42. The dashed line is given by Fernholz
& Finley (1996), which represents y;' =0.071 X Ry.

Root mean square of static and wall pressure fluctuations

In Fig. 9 the root mean square (rms) of the static pressure
is plotted against the distance from the wall. The contribution
from the background noise evaluated by Eq. (4) is removed.
The Reynolds number varies in the range 5880 < Ry < 15210.
When the distributions are normalized with outer scales there
is an almost perfect collapse between the different Reynolds
numbers. This shows a strong influence of the outer scales on
the pressure fluctuations. Direct numerical simulation (Skote,
2001) shows that prms has a maximum around y+ ~ 30. Since
the peak is located very close to the wall, it is not possible to
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Figure 7: Mean static pressure profiles in the boundary layer.
Pp is the mean pressure in the free stream. The distance from
the wall y is normalized by Rotta-Clauser thickness A.
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Figure 8: Root mean square of vertical velocity fluctuation
computed by Eq. (5). Inset shows the peak position of ’U:_ms
as a function of Reynolds number.

resolve in the present experiments due to direct probe interac-
tion with the wall. Our hypothesis is however, that also close
to the wall we would find an outer scaling of the pressure
fluctuations.
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Figure 9: Root mean square of static pressure fluctuations,
normalized by the free stream variables, versus the distance
from the wall normalized by the Rotta-Clauser thickness, A,
for 5880 < Ry < 15310.

There are many reports about wall pressure measurement
(Schewe, 1983, Gravante et al. 1998, Lofdahl & Gad-el-Hak,
1999, and references therein). According to the previous re-
ports, a pressure recorded by the pinhole is higher than ”true”
values at the wall. The pressure error, Ap,, = (measured
value)—(true pressure), may depend on pinhole diameter d,
hole depth 4, the diameter of the connection to the manome-
ter d., the wall shear stress 7, kinematic viscosity v, and the
characteristic length scale of the facility, D. Thus, the static
pressure error for a finite hole size can be written as

S
Tw v 'D'd d)’

where u, is the friction velocity and II is the non-dimensional

= (6)
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pressure error (Shaw, 1960). As Shaw noted, the error is al-
ways positive but it becomes zero for very small d. He also
found that the non-dimensional pressure error, II, increases
with increasing dt but reaches an asymptotic limit IT ~ 2.7
at dt = 800. The error increases with the £/d ratio but there
is no further change with £/d when ¢/d approaches 1.5 ~ 2.
In the present experiment, the normalized pinhole diameter
changes from 4.6 < d+ < 20.7 to £/d = 3.33, thus the error
may be very small.

The rms of the wall pressure, where the background noise
evaluated by Eq. (4) is removed, is plotted in Fig. 10 nor-
malized by inner variables. The rms-levels are of the same
order as the static pressure variations in the boundary layer,
and the Reynolds number dependence is well approximated by
a power law with exponent 0.28. A similar trend is also ob-
served in DNS-data obtained by Skote (2001). When (p;,)2
is plotted against 1, the present results scatter around the
relation reported by Farabee and Casarella (1991); p;"ms =
6.5+ 1.861n(61/333), and shows a stronger Reynolds number
dependence indicating a scaling close to outer scaling.
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Figure 10: Root mean square of the wall pressure, normalized
by inner variables, as a function of Reynolds number. DNS
values are obtained by Skote (2001).

The wall pressure spectra normalized by inner variables are
shown in Fig. 11. The high frequency region of the spectra
is seen to approximately scale on inner variables. Bradshaw
(1967) predicts a region where spectra collapse on both inner
and outer variables. This region exhibits an w™! behavior,
which can be associated with pressure sources in the loga-
rithmic part of boundary layer. The current results show a
significant portion of the spectra exhibits a power-law behav-
ior, but with a slope of —0.7. Before putting to much emphasis
of these results a more thorough investigation on spatial reso-
lutions issues has to me made. Such results will be discussed
in future publications.
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Figure 11: Wall pressure spectra normalized by inner vari-
ables.
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Correlation between static and wall pressure fluctuations

The correlations measured between the wall pressure and
the static pressure inside the boundary layer are plotted in
Fig. 12 for different Reynolds numbers. The background noise
evaluated by Eq. 4 is removed from the measured data. One
may conclude first that a positive correlation is observed across
the boundary layer. Secondly there is no significant Reynolds
number dependence for Rey > 7000 when the distance from
the wall is scaled with A.
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Figure 12: Correlation coefficient between wall pressure and
static pressure in the boundary layer.

Velocity and pressure correlation

Subject to the quasi-normal assumption, fourth-order
velocity structure functions are represented by products
of factored second-order quantities. Therefore, the root
mean square of pressure, prms, is scaled by purms?, ie.
Drms/ (purmsz) = (4. Hinze (1975) suggested that C is
0.7 whereas Batchelor (1951) gave a value of C; = 0.58. In
the course of this study, C is found to be dependent on the
distance from the wall. But it is close to O(1) in the overlap re-
gion (see Fig. 13). These results are in qualitative agreement
with DNS results by Skote (2001).

Correlations between the pressure and the streamwise ve-
locity fluctuations through the boundary layer are plotted in
Fig. 14. We can find three significant features. Firstly, the
correlation reaches a local minimum value close to the wall,
around y/A =~ 0.05. Secondly, the maximum correlation is
located around the boundary layer thickness, y ~ 0.2A. This
value decreases as the Reynolds number increases. Thirdly,
the correlation becomes negative in the free-stream region.
The latter result may be explained by the Bernoulli equation.
These three features are also observed in the DNS by Skote
(2001). We believe that the second characteristic may be used
to distinguish the turbulent and non-turbulent boundary in-
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Figure 13: Root mean square of pressure normalized by
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Figure 14: Correlation between stream-wise velocity and static
pressure in the boundary layer.

terface. Work along this line will be reported in the near
future.

CONCLUSIONS

In this experiment, both the mean and fluctuating static
pressure and wall pressure are measured in high-Reynolds
number turbulent boundary layer flows. No previous mea-
surements inside a turbulent boundary layer are known to the
authors. The results may be summarized as follows.

1. The root mean square of the vertical velocity component
(v?) is evaluated by means of mean pressure distri-
bution with Eq. (5). The profile agrees fairly well with
results obtained by direct v-component velocity measure-
ment.

2. The root mean square of wall pressure, normalized by
the square of the friction velocity, indicates an increas-
ing function of Ry; Phns R8‘284 This trend is similar
with result from DNS at lower Re and indicates an ap-
proximate scaling with outer variables, i.e. a dominate
influence of outer scales on the pressure fluctuations even
in the near wall region.

3. The distribution of static pressure rms, prms, across
the boundary layer is almost constant, independent of
Reynolds number if scaled with outer variables. This
is in accordance with the results for the wall pressure
fluctuations.

4. The distributions of the correlation coefficient between
wall and static pressure across the boundary layer for
different Reynolds numbers (Ry > 7000) essentially col-
lapse if the distance from the wall is normalized by A.

5. The ratio prms/puZ,,s is about 1 in the inner and over-
lap regions. The correlation between the pressure and
streamwise velocity exhibits local minimum and maxi-
mum values at y/A ~ 0.05 and y/A ~ 0.2, respectively.
Just outside the boundary layer, y/A > 0.25, the cor-
relation becomes negative, probably because potential
flow disturbances generate a negative correlation. These
trends are also observed in DNS.
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