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ABSTRACT

Large-eddy simulation (LES) is used to investigate three-
dimensional turbulent flow over a wavy boundary. An effi-
cient immersed boundary method (IBM) for simulating tur-
bulent flows in complex geometries is presented. The method
is based on a finite-volume approach on a non-staggered
Cartesian mesh and a fractional-step method. A force is
applied on the body surface through an immersed ghost cell
method. The reconstruction procedure allows systematic
development of numerical schemes that preserve the overall
second-order accuracy of the base solver. The accuracy of
the current method is validated by comparing with previous
boundary-fitted grid results (Zedler and Street, 2001). Both
steady and unsteady flows are simulated. A steady flow sim-
ulation provides not only the mean and turbulence statistics
but also visualization of the Gortler vortices. The unsteady
oscillatory flow displays the three-dimensional vortex for-
mation/transport cycle which is shown to be important for
sediment transport.

INTRODUCTION

In computational fluid dynamics, the primary issues are
accuracy, computational efficiency, and the handling of com-
plex geometry. Most large scale geophysical flows involve
complex three-dimensional geometry and turbulence. Accu-
rate representation of multi-scale, time dependent physical
phenomena is a principal concern. The development of accu-
rate and efficient methods that can deal with complex geom-
etry would represent a significant advance. The immersed
boundary method (IBM) has recently been demonstrated to
be applicable to complex geometries, requiring significantly
less computation than competing methods without sacrific-
ing accuracy and stability (Fadlun et al., 2000). The method
specifies a body force in such a way as to simulate the pres-
ence of a surface without altering the computational grid.
The main advantages of the IBM are memory and CPU sav-
ings and ease of grid generation compared to unstructured
grid methods. ‘Bodies of arbitrary shape can be treated.

In this study, we extend the idea of Fadlun et al. (2000)
via a ghost cell approach. It promises to provide the flexibil-
ity needed for imposing various boundary conditions. The
approach imposes the specified boundary condition by inter-
polating the variable to a ghost node inside the body. In or-
der to verify the accuracy of the IBM, two-dimensional flow
over a circular cylinder has been treated. In this paper, we
apply this approach to LES of three-dimensional turbulent
flow over a wavy boundary and compare with boundary-
fitted grid results (Zedler and Street, 2001). The purpose
of this study is to illustrate the flexibility of the IBM and
to assess the numerical procedures. The computational re-

quirements (both CPU and memory) are significantly lower
than a boundary-fitted grid. Furthermore, some important
features of the flow over the wavy boundary are identified
and explained.

NUMERICAL SIMULATION

Numerical formulation

Large eddy simulation is employed to simulate the tur-
bulent wavy boundary flow. The N-S equations are solved
using a finite-volume technique. The method of fractional
steps (a variant of the projection method), which splits the
numerical operators and enforces continuity (Kim and Moin,
1985) by solving a pressure Poisson equation, is used. All
spatial derivatives are discretized using central differences
with the exception of convective term. That term is dis-
cretized using QUICK (Leonard, 1979) in which the velocity
components on the cell faces are computed from the nodal
values using a quadratic interpolation scheme. Details of
the method can be found in Zang (1993) and Tseng and
Ferziger (2001). For three-dimensional turbulent flows at
high Reynolds number, it is not possible to resolve all of
the spatial and temporal scales. We solve for the large scale
motions while fluctuations at scales smaller than the filter
width are modeled using a subfilter-scale model. The sub-
grid scale (SGS) term 7;; is modeled with Zang’s dynamic
mixed model (Zang et al., 1993). The scale-similarity term
allows backscatter and the Smagorinsky component provides
dissipation.

Ghost cell method for immersed boundary

Mohd-Yusof (1997) suggested an approach that intro-
duces a body-force field f such that the desired velocity
distribution V is obtained at the boundary €. In princi-
ple, there are no restrictions on the velocity distribution
V or the motion of . He implemented the method for a
complex geometry in a pseudo-spectral code while avoiding
the need of a small computational time step. The method
costs no more than the base computational scheme. Fadlun
et al. (2000) applied this approach to a three-dimensional
finite-difference method on a staggered grid and showed
that the approach was more efficient than feedback forcing.
They also successfully implemented the immersed boundary
algorithm in LES of turbulent flow in a motored axisymmet-
ric piston-cylinder assembly (Verzicco et al., 2000). This
approach does not reduce the stability of the underlying
time-integration scheme and very good quantitative agree-
ment with experimental measurements was obtained. For
comparable accuracy, the computational requirements are
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reduced by at least a factor of ten compared to simulations
on an unstructured, boundary-fitted mesh (Verzicco et al.,
2000).

In this paper, we develop an alternative approach
through use of a ghost zone. In order to represent the com-
plex boundary on a Cartesian grid, a boundary forcing term
fi is added to the momentum equation implicitly through
ghost cells (Tseng and Ferziger, 2003). The present ap-
proach is more flexible with respect to the incorporation of
boundary conditions. The immersed boundary and a ghost
cell zone are illustrated in Fig. 1(a). We express the flow
variables in terms of a polynomial and use it to evaluate the
ghost point values. We use linear and quadratic approaches
which preserve the second-order accuracy of the overall nu-
merical scheme. The scheme is equally applicable to steady
and moving boundaries. In the case of moving bodies, the
points at which the boundary condition is enforced must be
recomputed at every time step but this does not affect the
reconstruction scheme.
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Figure 1: (a) Schematic of computational domain with an
immersed boundary. x: point in the physical domain, A:
the ghost cell domain. (b) Schematic of the points used to
evaluate the variable located at a ghost cell point G.

Linear reconstruction.

The simplest approach in 2-D is to construct a triangle
with the ghost node and the two nearest fluid nodes as the
vertices. This choice minimizes the probability of numerical
instability. In Fig. 1(b), G is the ghost node, X; and X»
are the two nearest fluid nodes and O is the node at which
the boundary condition is to be satisfied. O can be chosen
as the midpoint of the boundary segment within the cell or
the point on the boundary at which GO is normal to the
boundary. A linear interpolation in 2D is:

¢ =ag+ a1z + a2y (1)

The ghost cell value is a weighted combination of the val-
ues at the nodes (X1, X> and O). The coefficients can be
expressed in terms of the nodal values:

a® = B71¢t 2)

where, for linear interpolation, B is a 3 X 3 matrix whose
elements can be computed from the coordinates of the three
points. When the velocity at the boundary is specified:

1 =z yo
B=(1 =1 n
1 z2 w2

It is convenient to evaluate the matrices B at each point
initially and store them for use during the solution proce-
dure. The major drawback with this extrapolation is that

large negative weighting coefficients are encountered when
the boundary point is close to one of the fluid nodes used in
the extrapolation. Although algebraically correct, this can
lead to numerical instability. This problem can be overcome
by using the image of the ghost node inside the flow domain
to ensure positive weighting coefficients. The oint I is the
image of the ghost node G through the boundary as shown
in Fig. 2. The flow variable is evaluated at the image point
using the interpolation scheme. The value at the ghost node
is then ¢g = 2¢0 — ¢1. This ensures that large negative
weighting coefficients will not occur.
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Figure 2: Schematic of a ghost cell using the image method
(I is the image point) to minimize numerical instability.

Quadratic reconstruction.

Most second-order accurate finite volume flow solvers as-
sume quadratic variation of flow variables near the wall. Use
of higher order interpolation retains the formal second order
accuracy of the scheme. In two dimensions, if the flow vari-
ables are assumed to vary in a quadratic manner in both the
z and y directions, the value of ¢ is expressed as

¢ =ao +a1% + a2y + a3z’ + aqzy + asy? 3)

The six constants of the assumed polynomial are eval-
uated from five neighboring fluid nodes and the wall
point (Fig. 1(b)). The matrix B in (2) is replaced by a
6 x 6 matrix. The reconstruction procedure is similar to
that for the linear polynomial. The influence of the schemes
on the overall accuracy is compared in Fig. 3 for uniform flow
past a two-dimensional cylinder (Tseng and Ferziger, 2003).
The results suggest that the accuracy is second-order for
both the linear and quadratic interpolation, i.e. the order
is not affected by the boundary treatment. For three di-
mensional boundaries, we need to modify the interpolation
schemes (1) and (3). More neighbor nodes are involved but
the remainder of the solution procedure remains the same
as that described above.

It is important to note that for the forcing of Goldstein
et al. (1993), the velocity at the immersed boundaries was
imposed by canceling a few terms in the equations. This
implies that, in contrast to the feedback forcing method, the
stability limit of the integration scheme is the same as that
without the immersed boundaries, thus making simulation
of complex three-dimensional flows practical.

The method computes the velocity value just inside the
boundary using the neighboring points. With the polyno-
mial reconstruction scheme, we do not solve any equations
on the ghost cells. In the non-staggered Cartesian grid ap-
proach, the treatment for Dirichlet boundary conditions has
been described. A similar scheme can be used for Neumann
boundary conditions. The only difference is in the construc-
tion of matrix B in (2). This makes the current approach
applicable to a variety of boundary conditions and the ap-
proach can be easily extended to larger scale flows.
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Figure 3: Lo norm error of the streamwise (u) and spanwise
(v) velocity components vs. the computational grid size. o,
o: linear polynomial reconstruction, O, A: quadratic poly-
nomial reconstruction.

For example, the pressure boundary condition requires
the wall normal derivative to be zero at the boundary:

S, =0 (4)

The normal derivative on the boundary can be decomposed
as
o°P 9P OP |

o el t By (5)
where Az and fy, are the components of the unit vector
normal to the boundary. Since fg and Ay are known, the
computation of the normal gradient is trivial. The same
strategy can be extended to staggered Cartesian grid (Tseng
and Ferziger, 2003).

It is worth pointing out here how our methodology dif-
fers from the immersed boundary method of Ye et al. (1999)
and Fadlun et al. (2000). First, the interpolation scheme
differs from theirs. Second, the reshaped cell method in Ye
et al. (1999) complicates the numerical algorithm and the
extension to other boundary conditions and moving bound-
aries is difficult. Third, the current approach uses ghost cells
rather than reshaped cells to enforce the boundary condition.

Note that this method does not require any internal
treatment of the body except the ghost cells since a frac-
tional step is used and the forcing is only on the boundary.
Internal treatment was required by Goldstein et al. (1993)
and Mohd-Yusof (1997) in their spectral simulations to alle-
viate the problem of spurious oscillations near the boundary.

Convergence of the Poisson solver

The flow solver uses a pressure correction method to sat-
isfy the continuity equation. For high Reynolds numbers and
highly stretched grids, it is difficult to converge the Poisson
equation to machine accuracy. When we simulate complex
geometry using IBM, the slow convergence is further exac-
erbated because the immersed boundary modifies the linear
system. Krylov subspace methods are an attractive alter-
native approach. The presence of the immersed boundary
poses no additional complication for these methods. The
convergence rate of these procedures depends critically on
the choice of the preconditioner. The convergence of point
Gauss-Seidel, Bi-CGSTAB, Bi-CGSTAB with an ILU pre-
conditioner and Bi-CGSTAB with the SIP preconditioner
is shown in Fig. 4. The incomplete factorization precondi-
tioning (both ILU and SIP) for Bi-CGSTARB accelerates the
convergence significantly. The SIP preconditioner shows a

dramatic reduction in iteration number and is used in all
calculations shown below.

_ef[ *  Point Gauss-Seidel
1077 - - Bi-CGSTAB 1
~  Bi-CGSTAB with ILU preconditioner
_1s| L——_Bi-CGSTAB with SIP preconditioner
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Figure 4: The convergence rate of point Gauss-Seidel, Bi-
CGSTAB, Bi-CGSTAB with ILU preconditioner and Bi-
CGSTAB with SIP preconditioner applied to the pressure
equation for the simulation of 3-D turbulent flow over wavy
boundary.

NUMERICAL RESULTS

Description of the simulations

The results using IBM described in previous section
are compared with the results of Zedler and Street (2001)
who used a non-orthogonal, boundary-fitted grid to com-
pute turbulent flow over a wavy boundary. Their results
have been compared with laboratory experiments for the
same geometry (Calhoun and Street, 2001). The bottom
boundary configuration mimics straight crested transverse
ripples of form Asi.n(27rm/)\), where A = 0.254 ¢m is the
ripple amplitude and A = 5.08 ¢m is the ripple wave-
length. The domains are roughly the same with dimensions
of 20.3 em x 4.8 cm x 2.1 em (L x W x H) as shown in
Fig. 5. Two cases are used to illustrate the application of
IBM. The steady flow is driven by a uniform pressure gradi-
ent that yields Reynolds number of about 2500, based on the
channel height of 2.1 ¢m and the mean streamwise velocity.
The unsteady flow is driven by an oscillatory pressure gra-
dient that yields the same Reynolds number based on the
maximum velocity. The boundary conditions are periodic
on all lateral boundaries, free-slip (zero stress) at the top
and no-slip at the wavy bottom.

Steady flow simulations

For purposes of comparing with boundary-fitted grid re-
sults, vertical profiles at five location in one wavelength of
the topography are shown. The mean streamwise veloci-
ties and Reynolds shear stress are compared in Figs. 6(a)
and (b) respectively. The differences between the IBM and
boundary-fitted profiles for the mean streamwise velocities
are very small. In particular, the profiles in the outer regions
(beyond (y — yo) = 0.3h, yo being the height of bottom
topography) identified by Calhoun and Street (2001) are
almost identical. A detailed comparison of the mean stream-
wise velocities in the vicinity of the crest is shown in Fig. 7.
The differences between the average velocity profiles over
the crest are small. The Reynolds stress (—u/v’) at each lo-
cation in the simulation using IBM compares well with the
boundary-fitted grid profile (Fig. 6(b)).

The contours of mean vertical velocity from the IBM
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Figure 5: The computational domain for the wavy channel
flow; the domain size is 20.3 cm x 2.1 cm x 4.8 cm. The
bottom wavy boundary is derived from the boundary-fitted
grid (every second grid point in each direction is shown).
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Figure 6: (a) Comparisons of streamwise velocity profile
from the IBM and boundary-fitted grid results for steady
flow. The arrow at the top denotes 0.1 m/s (0.56Umaz).
(b) Comparisons of turbulent Reynolds stress between the
IBM and boundary-fitted grid results for steady flow. The
arrow at the top denotes 0.0002 m?2/s2. o: boundary-fitted
grid results and *: IBM results.
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Figure 7: Comparisons of streamwise velocity profile be-
tween the IBM and boundary-fitted grid results for steady
flow in the vicinity of the crest. o: boundary-fitted grid
results and x: IBM results.

and boundary-fitted grid results are compared in Fig. 8.
The agreement is very good. Positive velocity is denoted
by the solid contours and negative velocity by the dashed
ones. The vertical velocity is more sensitive to the method
than the streamwise velocity since its magnitude is much
smaller. The recirculation is apparent in the mean vertical
velocity contour as positive vertical velocities on the down-
ward sloping portion of the surface. The vertical velocity
contours obtained with the IBM are very similar to the con-
tours produced by boundary-fitted grid.

Height H (m)
Height H (m)

Figure 8: Comparisons of mean vertical velocity contours
between the IBM and boundary-fitted grid results for steady
flow over one wavelength of the topography. (a) IBM (b)
boundary-fitted grid. ——: negative velocity, —: positive
velocity.

In order to illustrate the structure of the instantaneous
vortex cores we have plotted contours of the second invariant
of the velocity gradient tensor (Jeong and Hussain, 1995)
in Fig. 9. This approach is a variation of pressure mini-
mum method. The vortex cores resemble those in channel
flow, but they are longer, taller and have a greater angle of
inclination (Calhoun and Street, 2001). These vortices re-
sult from the Gortler instability associated with boundary
curvature. A detailed description of these vortices can be
found in previous studies (Calhoun and Street, 2001; Zedler
and Street, 2001). The current study identifies the same
structures, indicating that this method adequately resolves
turbulent boundary layer.

Figure 9: Instantaneous snapshot of vortex cores plotted as
isocontours of A2 = —50 in fully developed steady wavy flow
with the IBM approach.

Contours of the components of the turbulence intensity
(TI) are shown in Fig. 10. The maximum streamwise u'? is
found above the center of the trough and is associated with
the shear layer that detaches from the surface at the separa-
tion point. Contours of vertical TI show that the maximum
is located slightly downstream of the location of the max-
imum of the streamwise TI. The maximum value is about
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one third of the streamwise value. Henn and Sykes (1999)
noted an increase in spanwise velocity fluctuations on the
upstream slopes of their wavy boundary and suggested that
the precise mechanism responsible is not yet known. Cal-
houn and Street (2001) concluded that Gértler instability
appears to be important in the formation of the vortices
and associated with the increase in spanwise velocity fluc-
tuation. As shown in Fig. 10(b), the spanwise TI shows a
marked increase on the upslope close to the wavy surface.
The magnitude and location suggests a localized production
mechanism associated with the waviness of the boundary.
These features confirm the link between the streamwise vor-
tices and the increase of spanwise TI found by Calhoun and
Street (2001).
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Figure 10: Contours of mean flow turbulence intensity. (a)
Streamwise turbulence intensity w2 (b) Spanwise turbulence
intensity v'2 (c) Vertical turbulence intensity w'2.

Unsteady flow simulations

We also simulated the unsteady flow over a wavy bound-
ary produced by an oscillatory pressure gradient. A small
recirculation zone forms just before the pressure gradient
has attained its maximum negative value. As the flow slows
down due to the adverse pressure gradient, spanwise vortices
form and are lifted off the bottom to roughly the height of
the wave crests. Quantitative comparisons between the IBM
approach and boundary-fitted grid results of the spanwise-
averaged streamwise velocity at four time steps are given in
Fig. 11. These velocity profiles are phase averaged over ten
cycles to obtain stable statistics. Sample taking starts after
the flow reaches an oscillatory steady state. The mean pro-
files show good agreement with boundary-fitted simulations.

Fig. 12 provides the instantaneous, spanwise-averaged
velocity vector field at ¢ = 0.25T. The time t = 0 corre-
sponds to the maximum pressure gradient. Recirculation
zones appear behind the ripple crests in the instantaneous
velocity vector plot but are confined to the bottom few
grid points. These are similar to vortices obtained with
boundary-fitted grids (Zedler and Street, 2001). The flow
behavior in both the steady and unsteady cases in the cur-
rent study is nearly the same as that in studies that used
boundary-fitted grids (Calhoun and Street, 2001; Zedler and
Street, 2001), indicating that the present method accurately
captures the three-dimensional turbulent flow field.

Fig 13 presents the vortex formation/transport process
by showing the vortex cores at different time steps. The
formation cycle occurs twice per period, on either side of a
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Figure 11: Comparison of streamwise velocity at different
time steps. (a) t=0.25T (b) t=0.5T (c) t=0.75T (d) t=T.
T is the time period imposed by the oscillatory pressure
gradient. o denotes the boundary-fitted grid result and =
denotes the IBM result.
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Figure 12: Instantaneous, spanwise-averaged velocity vector
plot at t = 0.25T using IBM. (every second grid point in
each direction is shown).

wave trough. It starts as the flow accelerates (t/T = 0.25)
and forms the recirculation zone. The vortex structures
are generated by boundary layer separation and the growth

-of three-dimensional disturbances (Scandura et al., 2000).

These structures are advected downstream as the flow slows
down. As the flow slows down, the boundary layer on the
lee side thickens and the recirculation zone is lifted away
from the bottom. Some of the vortices are centered over
the trough. This structure breaks up into a more complex,
three-dimensional structure as the flow slows further. After
the flow switches direction (¢/T = 0.5), these complex struc-
tures are lifted off the bottom and advected over the crest
(Fig. 13(c)). They are stretched in the streamwise direction
and lose some of their strength as the flow accelerates in the
other direction (¢/T" = 0.75). Then the process repeats in
the other direction. The current results are very similar to
those simulated in Scandura et al. (2000) and the nonlinear
effects appear important for the growth of three dimensional
instability.

CONCLUSIONS
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(a) t/T=0.3 (b) t/T=0.5

(c) t/T=0.7 (d) t/T=0.9

(e) t/T=1.1 (f) t/T=1.3

Figure 13: Vortex structures plotted with the A2 method for
different flow phases during a time period T(¢/T = 0.3 to
t/T = 1.3). t/T = 0,1 corresponds to the phase of maxi-
mum oscillatory pressure gradient. The vortices are localized
between two contiguous wave crests.

The aim of this study was to develop and apply an ghost
cell immersed boundary method for LES of turbulence over
a wavy boundary. Both steady and unsteady flows were sim-
ulated and compared with established numerical simulations
done on a boundary-fitted grid. The entire computation in-
cluding the body forces are done on a structured orthogonal
mesh. The forcing was imposed by introducing ghost-cells
inside the boundary and does not reduce the stability limit
of the time-advance scheme. These simulation results agree
well with previous numerical and experimental results, in-
dicating the validity and accuracy of the present method.
Many structures in flows over a wavy boundary were identi-
fied and investigated in the current study.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Robert L. Street and
Dr. Emily Zedler for their invaluable help and continuous

support with the turbulent flow simulation. Finacial support
for this work was provided by NSF ITR/AP (GEO) grant
number 0113111 (Ms. B. Fossum, Program Manager) and
NASA AMES/Center for Turbulent Research, Stanford.

REFERENCES

Calhoun, R. J., and Street, R. L., 2001, “Turbulent flow
over a wavy surface: Neutral case,” J. Geophys. Res., Vol.
106, pp. 9277-9293.

Fadlun, E. A., Verzicco, R., Orlandi, P., and Mohd-
Yusof, J., 2000, “Combined immersed-boundary finite-
difference methods for three-dimensional complex flow sim-
ulations,” Journal of Comput. Phys., Vol. 161, pp. 30-60.

Goldstein, D. Handler, R., and Sirovich, L., 1993, “Mod-
eling a no-slip flow boundary with an external force field,”
Journal of Comput. Phys., Vol. 105, pp. 354-366.

Henn, D., and Sykes, I., 1999, “Large-eddy simulation
of flow over wavy surfaces,” J. Fluid Mech., Vol. 383, pp.
75-112.

Kim, J., and Moin, P., 1985, “Application of a fractional-
step method to incompressible Navier-Stokes equations”,
Journal of Comput. Phys., Vol. 59, pp.308-323.

Leonard, B. P., 1979, “A stable and accurate convec-
tive modeling procedure based on quadratic upstream inter-
polation Third-order multi-dimensional Euler/Navier-Stokes
solver”, Comp. Methods Appl. Mech. Engr., Vol. 19, pp.
58-98.

Mohd-Yusof, I, 1997, “Combined immersed
boundary/B-Spline Methods for simulations of flows
in complex geometries”, CTR Annual Research Briefs,
NASA Ames Research Center/Stanford Univ, Center for
Turbulent Research, Stanford, CA.

Scandura, P.; Vittori, G., and Blondeaux, P., 2000,
“Three-dimensional oscillatory flow over steep ripples,” J.
Fluid Mech., Vol. 412, pp. 355-378.

Tseng, Y. H., and Ferziger, J. H., 2001 “Effects of coastal
geometry and the formation of cyclonic/anti-cyclonic eddies
on turbulent mixing in upwelling simulation,” J. Turbulence,
Vol. 2, 14.

Tseng, Y. H., and Ferziger, J. H., 2003 “A ghost-cell
immersed boundary method for flow in complex geometry”,
Submitted to J. Comput. Phys.

Verzicco, R., Mohd-Yusof, J., Orlandi, P., and Haworth,
D., 2000, “Large eddy simulation in complex geometry con-
figurations using boundary body forces”, AIAA Journal,
Vol. 38, pp. 427-433.

Ye, T., Mittal, R., Udaykumar, H. S., and Shyy, W.,
1999, “An accurate Cartesian grid method for viscous in-
compressible flows with boundary body forces”, Journal of
Comput. Phys., Vol. 156, pp. 209-240.

Zang, Y., 1993, On the development of tools for the simu-
lation of geophysical flows, PhD thesis, Stanford University.

Zang, Y., Street, R. L., and Koseff, J. R., 1993, “A
dynamic mixed subgrid-scale model and its application to
turbulent recirculating flows,” Phys. Fluids, Vol. A(5), pp.
3186-3196

Zang, Y., and Street, R. L., 1995, “Numerical simulation
of coastal upwelling and interfacial instability of a rotating
and stratified fluid”, J. Fluid Mech., Vol. 305, pp. 47-75.

Zedler, E., and Street, R. L., 2001, “Large-eddy sim-
ulation of sediment transport: Currents over ripples,” J.
Hydrau. Eng., Vol. 127, pp. 444-452.

—940—





