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ABSTRACT

Large-eddy simulations of transitional incompressible
channel flow on comparably coarse grids are performed. Two
modifications to the standard Approximate Deconvolution
Method (ADM) are proposed and compared to highly re-
solved DNS calculations. The results demonstrate that it is
well possible to simulate transitional flows on the basis of
the ADM algorithm. During the initial phase of transition,
the models remain inactive and do not disturb the flow de-
velopment as long as it is still well resolved on the coarse
LES grid. During the late stages of transition the model
contributions provide necessary additional dissipation.

The results of the modified ADM show excellent agree-
ment with DNS in e.g. the skin friction throughout the
transitional phase and the fully developed turbulent chan-
nel flow. Moreover, due to the dynamic determination of the
model coefficient, no additional ad-hoc constants or adjust-
ments are needed.

INTRODUCTION

Flows undergoing transition to turbulence are of great
practical importance, e.g. flows in boundary layers on air-
craft wings or intermittent flows around turbine blades. The
use of Large-Eddy Simulations (LES) to predict transitional
and turbulent flows is appealing as they promise to provide
accurate results at greatly reduced computational cost in
comparison with fully resolved Direct Numerical Simulations
(DNS). However, transitional flows are substantially differ-
ent from turbulent flows in many respects. Not only is there
no fully-developed energy cascade, but also slow growth and
subtly complex interactions between base flow and various
instability modes can affect the physical changeover from the
laminar to the turbulent state and must thus be resolved or
modeled reliably.

The physics of forced transition to turbulence in canoni-
cal geometries is well understood and there are many exper-
iments, stability theories and simulations available (Kleiser
and Zang, 1991; Herbert, 1988).

Only recently, large-eddy simulations of transitional
flows have become an important field of research. Nev-
ertheless, a number of successful applications of LES to
transitional flows are available, most of them based on
the Smagorinsky model (Smagorinsky, 1963). In its origi-
nal form, Smagorinsky’s model is too dissipative and usu-
ally relaminarizes transitional flows. Therefore, Piomelli
and Zang (1991) introduced an intermittency correction to
the eddy-viscosity to decrease the dissipation in (nearly-
)laminar regions for their channel flow simulation. Voke and
Yang (1995) employed a low-Reynolds number correction to
simulate bypass transition. Alternatively, Germano et al.
(1991) and subsequently Lilly (1992) proposed a dynamic
Smagorinky model. This class of models has been success-

fully used, e.g. for transition in incompressible boundary
layers by Huai et al. (1997) applying the localized dynamic
version of Piomelli and Liu (1995). Still using an eddy-
viscosity assumption, Ducros et al. (1996) introduced the
filtered structure function model and applied it successfully
to weakly compressible boundary layer flow. In its origi-
nal form, the structure function model (Métais and Lesieur,
1992) was found too dissipative for transitional flows.

A SGS model suitable to simulate transition should leave
the laminar base flow unaffected and only be effective, in an
appropriate way, when nonlinear interactions between the
resolved modes and the non-resolved scales become impor-
tant. The initial slow growth phase of the instability waves
is mostly sufficiently resolved even on a coarse LES grid.

The aim of the present work is to examine the applicabil-
ity of the ADM approach to transitional flows. Large-eddy
simulations using the approximate deconvolution model
(ADM) in the fully-turbulent regime have shown very good
agreement with DNS calculations, e.g. for incompress-
ible channel flow (Stolz et al., 2001a), shock/turbulent-
boundary-layer interaction (Stolz et al., 2001b). A transi-
tional rectangular jet has been simulated by Rembold et al.
(2002). As a first step, the present study investigates the
simulation of temporal K-type (fundamental) transition in
incompressible channel flow, for which extended DNS re-
sults are available (Gilbert and Kleiser, 1990). In order to
test the performance of the SGS model, the grid resolution
for the LES calculations is chosen quite coarse. With such
resolution, a computation without model is underresolved
in all three spatial directions and the SGS terms are indeed
needed.

LES MODELLING

In the ADM approach, the filtered Navier-Stokes equa-
tions with deconvolved quantities are used with the unclosed
terms and a relaxation term is added to the right-hand side
(Stolz et al., 2001a). Equation

du; Oujul 8p 1 0%m _
ot + Oz +3a:i Re Oz ;0x; = XU -QnG)x (1)
is solved together with the filtered incompressibility con-
straint
o
b;
Here, an overbar denotes filtered quantities T; = G * u,,
a star stands for the approximately deconvolved quantities
ui = QN * U;, G is the discrete primary low-pass filter
(defined below) and Qu its approximate inverse Qn =
,JLO(I — G)” & G7!. The definition of G is based on
Stolz et al. (2001a) and can be written for equidistant grids

in Fourier space (see figure 1) as

=0 @)

G(w) = 0.625 + 0.5 cos w — 0.125 cos 2w (3)
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Figure 1: Transfer functions for the different filter (peri-
odic, equidistant grid directions only), N = 5. G(w)
-—---HWw)=1-Qnw)G(w)

The definition is extended to non-equidistant grids in the
wall-normal direction by assuring that all moments up to
second order are vanishing. For this reason the parabolic
laminar base flow profile is invariant with respect to the filter
operation. Moreover, the high-pass filter H = I — Qn * G
is at least of order O(A™(N+1)) with A being the grid size,
N the deconvolution order and r the order of the primary
filter. The latter is at least 3 for the primary filter G used
herein.

NUMERICAL IMPLEMENTATION AND PARAMETER
SETTINGS

The simulations use a parallel implementation of a
Fourier-Chebyshev spectral method with periodic bound-
ary conditions in the streamwise and spanwise directions
together with no-slip conditions at the walls. A constant
flow rate is maintained, and the nonlinear terms are com-
puted with full dealiasing in all spatial directions. The
divergence-free condition is enforced exactly by an influence-
matrix technique (Kleiser and Schumann, 1984). Time ad-
vancement is done by a semi-implicit Runge-Kutta/Crank-
Nicolson scheme. The initial disturbances for the transition
simulations consist of a two-dimensional (stable) Tollmien-
Schlichting (TS) wave with intensity 3% and two superim-
posed oblique (stable) three-dimensional waves with inten-
sity 0.1% as in the fully resolved DNS by Gilbert and Kleiser
(1990). The Reynolds number based on the bulk velocity
and the channel half-width is Re = 3333. For the statisti-
cally stationary results of fully-developed turbulent channel
flow, the data is averaged from time ¢t = 250 to t = 500 well
after the transitional phase. Because the Reynolds number
of the results for the turbulent channel flow with Re, =~ 210
(Re = 3333) is similar to Re, ~ 180 (Re = 2800) (Moser
et al., 1999), we present results for Re, & 210 only.

In figure 2 a Chebyshev spectrum of the streamwise ve-
locity component of the initial disturbance is shown. As it
can be inferred from the figure, the disturbances are fully
resolved (with about 15 decimals machine precision) for
N =~ 90. For N > 25 the energy content of the modes
is monotonically decreasing, indicating that the minimum
resolution to resolve the initial disturbance lies just above
N = 25. For this reason a minimum wall-normal resolution
of N = 33 should chosen for an LES. To further validate this
point, two simulations with full resolution (1282 x 129 grid
points) were conducted starting from fields with resolution
322 x33att =0 and t = 80, respectively. Both showed
no significant difference in the integral quantities like skin
friction and shape factor during transition compared to the
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Figure 2: Chebyshev spectrum apy of the streamwise velocity
component of the initial disturbance. The vertical dashed
line indicates a wall-normal resolution of N = 33.
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Figure 3: Evolution of 2D Fourier modes (k;,0) during the
initial states of transition. SGS model is standard ADM
with deconvolution, but without relaxation (x = 0).

reference DNS calculation (1282 x 129 grid points for simu-
lation and initial condition). Moreover, it can be concluded
that the initial phase of the saturated Tollmien-Schlichting
wayve is sufficiently resolved with only 33 wall-normal points.
Further test calculations were conducted to confirm the ac-
curacy of the results with respect to the choice of the time
step.

RESULTS

Standard ADM

For both laminar and turbulent flow, the standard ADM
gives good results. However, initial tests using ADM in
its original form (Stolz et al., 2001a) have confirmed the
expectation that it cannot directly be applied to simulate
transitional flows on very coarse grids in which the initial
state consists of a laminar base flow with superimposed
small-amplitude disturbances. The problem is mainly due
to improper interaction of deconvolution for the nonlinear
terms and the relaxation term. Figure 3 shows the evolu-
tion of the 2D Fourier modes with vanishing relaxation term
x = 0. The physical solution at this stage of development
(t < 100) consists of a saturated 2D wave, which exhibit
a geometric progression to higher wavenumbers, with each
of the Fourier modes slowly decaying in time (Gilbert and
Kleiser, 1990), see also figure 8. However, the influence of
the deconvolution on the laminar solution is such that small-
scale perturbations are amplified until these are dominating
the flow field. The reason for this is the repeated application
of the filter G in regions close to the wall. Fulfilling the wall
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boundary conditions can lead to oscillations in the near-wall
region. Note that this phenomenon only occurs if three-
dimensional filtering is used and the wall-normal resolution
is fairly coarse. For example, using 48 or more points in the
wall-normal direction, the deconvolution gives good results
even close to the wall due to the lower energy content of the
modes near the cutoff (see figure 2). Applying the filter op-
eration in Chebyshev spectral space instead of a real-space
implementation does not remedy these deficiencies. There-
fore, it seems to be inherent to such coarse grids. It should
be noted again that the grid was deliberately chosen very
coarse.

Modified ADM

To overcome the above-mentioned deficiencies of the
standard ADM procedure, two alternative variants have
been developed. Both of these were found to be suitable for
LES of transitional flow.

LES(a) Instead of using three-dimensional filtering and
deconvolution, only two-dimensional filtering in
the homogeneous wall-parallel directions is ap-
plied. The two-dimensional deconvolution op-
erator is maintained all the way through the
transitional and turbulent phases. Herewith,
the advantages of the ADM technique are re-
tained, although this model is not as general as
the original formulation since it is restricted to
filtering in two dimensions only.

LES(b) The three-dimensional filter definition is re-
tained to evaluate the relaxation term, but the

. OU ;T .
non-linear terms are evaluated as i,asina

coarse-grid DNS. Note that with this procedure
the quantity u; has to be considered as filtered
by spectral cut-off to grid resolution. This mod-
ification is still as general as the standard ADM
procedure but does not use deconvolved quanti-
ties for the non-linear terms.

For both options, the dynamic determination of the
relaxation parameter y follows the standard formulation
(Stolz et al., 2001b)

Fz(t + At)lx:O — Fz(t)
Byt + At)lx=0 — Fo(t + At)ymx (o)

x(t + At) = x(t) (4)

where F3(t) = Fy(H«u;,t) is the second-order velocity struc-
ture function, computed from the high-pass filtered velocity
field H #%;. This dynamic determination of X aims at keep-
ing the energy at small scales constant, for which Fy (H xu;)
is a measure. Usually, x is updated only every couple of time
steps, but changing this interval somewhat has negligible in-
fluence. In order to ascertain numerical stability, x needs
to be clipped to 0 < x < 1/At. Moreover, a filter opera-
tion was applied to smoothen v in regions where it strongly
varies in space.

Results are shown for the simulations given in table 1. All
computations were started at ¢t = 0 with the initial condition
described in section 2 and integrated up to at least a non-
dimensional time ¢ = 500. For LES(a) and LES(b) the term
~x (I — @n x G) *T; was computed in real space with full
dealiasing. LES(c) denotes the dynamic Smagorinsky model
(Lilly, 1992), included here for reference.

Transitional phase. During the initial phase (t < 100)
the saturated two-dimensional Tollmien-Schlichting wave is

Table 1: Temporally and spatially averaged skin friction Re,
obtained for the different simulations of fully developed tur-
bulent channel flow.

Re, for Re = 2800 3333

LES(a) 32% x 33, 2D filt./deconv. 180.4 2142 —-—
LES(b) 322 x 33, only 3D relax.  179.7 209.8 ----

LES(c) 32% x 33, dyn. Smag. 170.7 2018 ----eee-
coarse grid DNS 322 x 33 201.9 2206 —o—
fully-resolved DNS 1282 x 129 177.8 2125 —

dominating, thus all integral quantities like Re, remain on
their laminar values. In the secondary instability phase
(Herbert, 1988), coinciding with the visible onset of tran-
sition (¢ & 100}, the typical A-shaped vortices are generated
and elongated (¢t ~ 120). This leads to the distinct peak-
valley splitting (Gilbert and Kleiser, 1990). In the following
“spike stage” the flow is dominated by strong wall-normal
shear layers which rapidly break down to turbulence, first in
the peak plane and shortly thereafter in the valley regions.
Although the A-vortices can be identified in all the different
simulations, the time ¢ of the breakdown is quite different for
the various computations. This is shown by figure 4 which
depicts the temporal evolution of the Reynolds number Re,
based on the friction velocity and the channel half-width,
averaged over the two walls. The onset of transition and the
initial growth of Re, is still comparable for all simulations,
they begin to separate during the spike stage (¢ = 140).
Furthermore, the skin friction peak value is similar and the
well-known overshoot of Re, of about 15% is visible for both
DNS and LES(a) and LES(b). The formation of fully devel-
oped turbulence seems to proceed on the same time scale.
The stationary values of Rer after transition (Re = 3333)
are given in table 1.

The shape factor Hj2 is a quantity that gives an idea
of the reorganization of the mean velocity profile averaged
over wall-parallel planes (figure 5). Starting from the value
Hj2 = 2.5 of the laminar base flow profile all simulations
reach the turbulent value at around the same time ¢ = 170.

The mean-velocity deficit in the middle of the channel,
seen from Recy, in figure 6, shows again at least two distinct
paths from the laminar to the turbulent values.

It is common to all these results that the coarse-grid
DNS and the 2D filtered LES(a) are always going through
transition at earlier times than the fully-resolved DNS and
LES(b). LES(c) seems to first follow the route of the coarse-
grid DNS and then to change to the path of the fine-grid
DNS.

Better insight can be gained by looking at the veloc-
ity fluctuations urms,maz, the wall-normal maximum of the
streamwise average of urms, given for the valley plane in fig-
ure 7. It is obvious that the coarse-grid DNS and LES(a) are
close together, indicating that the SGS model is still inactive
until £ & 150. For LES(b) already at ¢ ~ 120 some minor
differences can be observed and due to dissipative SGS influ-
ence the urms peak at ¢ = 160 is accurately predicted. The
Smagorinksy model again follows a route in between the two
DNS calculations. In the peak plane (not shown here), the
phase of intense fluctuation is observed at the same time for
all simulations (¢ & 150).

Detailed analysis of LES(b). LES(b) follows the fully-
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Figure 4: Evolution of Re, averaged in a wall-parallel plane
during the transitional phase (Re = 3333). Line caption see
table 1.
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Figure 5: Evolution of the shape factor Hiz averaged in
a wall-parallel plane during the transitional phase (Re =
3333). Line caption see table 1.

resolved DNS best and shows significant improvement of
the results over the coarse-grid DNS and the other mod-
els LES(a) and LES(c). It is therefore interesting to look
at the evolution of the Fourier components that correspond
to the 2D waves of the saturated Tollmien-Schlichting wave.
Figure 8 shows both the DNS and the LES(b) calculation.
The modes that are on an energy level above 10~% are even
for the LES on the respective DNS level. However, higher
modes contain more energy than in the DNS and are very
noisy. This is interesting from that respect that these os-
cillations must clearly be attributed to the SGS model. On
the other hand, these perturbations do not grow in time
and do not lead to inaccurate integral results. These dis-
turbances originate close to the wall boundaries where the
three-dimensional high-pass filter used for the relaxation
term is difficult to apply.

The evolution of the dynamic coefficient for the relax-
ation term x is shown in figures 9 and 10. Every five full
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Figure 6: Evolution of Recr averaged in a wall-parallel
plane during the transitional phase (Re = 3333). Line cap-
tion see table 1.

100 120 140 160 180

Figure 7: Evolution of urms,maz during the transitional
phase (Re = 3333). The wall-normal maximum of the
streamwise average of 4rms is shown. Line caption see table
1.

Runge-Kutta time steps, x is updated according to equation
(4). This definition was derived for fully-turbulent flows for
which it aims at keeping in equilibrium the energy content of
the small scales. The consequence can be seen in figure 9 for
t < 150: Since the energy of the small scales is growing at
these times due to physical interactions, the relaxation term
is growing as well to counteract the generation of small-scale
energy. However, the total influence of the relaxation term
—xH *; is still very limited due to the fact that H * %;
is small. Only when the energy cascade has extended to
the smallest resolved scales the equilibrium between pro-
duction and dissipation becomes relevant, indicated by the
statistically constant values of x (¢t > 160). In figure 10,
wall-normal profiles of x are shown. During the phase when
the saturated TS-wave is dominating the flow a maximum
is visible close to the wall (¢t = 60), whereas during the sec-
ondary instability phase (¢ = 130) the maxima have moved
further away from to wall. In the fully-developed turbulent
channel, y is fairly constant across the channel with slight
decrease close to the wall. This is actually desired as the
influence of the model close to the wall should be smaller.

Fully turbulent phase. In table 1, the averaged values for
Re, are also given for Re = 2800 (see Moser et al. (1999)).
For the Re = 3333 cases, statistical averaging is performed
for t = 250 — 500. The mean turbulent velocity profiles are
depicted in figure 11 and the velocity fluctuations are shown
in figure 12.

It is obvious that the coarse-grid DNS overpredicts the
stationary value of Re; by approximately 10% compared
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Figure 8: Evolution of the Fourier modes corresponding to
two-dimensjonal waves during the transitional phase (Re =
3333, LES(b)). top fully-resolved DNS 1282 x 129, below
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Figure 9: Evolution of x averaged wall-parallel planes during
the transitional phase (Re = 3333, LES(b)).
===z =0, z2=09—~—z=0.65
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to the resolved DNS. This is explained by the fact that
the numerical scheme used for the computations provides
no inherent numerical dissipation. Both model calculations
LES(a) and LES(b) provide a much better prediction of the
wall friction. The dynamic Smagorinsky model LES(c) does
similarly, although it seems to be slightly too dissipative.
A similar conclusion can be drawn from the mean velocity
profile; especially LES(b) agrees very well with the fully-
resolved DNS and the theoretical values.

The prediction of the velocity fluctuations (figure 12)
for the dynamic Smagorinsky model LES(c) are not very
accurate, whereas the use of the ADM cases LES(a) and
LES(b) shows a substantial improvement. Again, LES(b)
(no deconvolution) is very close to the values of the fine-
grid DNS calculation. LES(a) is less accurate leading to the
conclusion that the capturing of three-dimensional effects in
relaxation and deconvolution are important (compare also to

<x>

Figure 10: Evolution of x averaged in wall-parallel planes
during the transitional phase (Re = 3333, LES(b)). o ¢ = 60,
* t = 130, X averaged t = 250 — 500

<u+>

0 2

10 10

Figure 11: Averaged velocity profile < ut > scaled with
wall units in the fully turbulent case (Re = 3333). Line
caption see table 1.

three-dimensional filtering and deconvolution in Stolz et al.
(2001a)).

CONCLUSIONS

Several large-eddy simulations of transitional incom-
pressible channel flow have been performed. In order to be
able to work on the very coarse grid deliberately chosen, the
standard ADM methodology had to be adapted due to prop-
erties of the deconvolution in the wall-normal direction. Two
new variants of the original ADM algorithm are proposed
and compared to coarse- and fine-grid DNS calculations as
well as results of the dynamic Smagorinksy model.

The results obtained indicate that it is well possible to
simulate transitional wall-bounded flows on the basis of the
modified ADM method. During the early stages of transi-
tion, the results of the coarse-grid DNS calculations, which
have sufficient resolution for this stage of flow development,
can be recovered. This indicates that the LES model is in-
active there. During the rapid mean flow development, the
model contributions are beginning to provide additional dis-
sipation. The results demonstrate that a proper treatment
of each spatial direction should be used in order to faithfully
represent the relevant physical features such as the local gra-
dients. Moreover, the LES model is formulated in a more
general way.

The neglect of the deconvolution in the model LES(b)
is a step towards a more simple subgrid model which pro-
vides dissipation based on a filtering approach. A further
investigation aiming at a more versatile procedure for an
easier dynamic determination of the relaxation parameter x
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Figure 12: Averaged velocity fluctuations in the fully tur-
bulent case (Re = 3333). Line caption see table 1. top
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is currently in progress.

The LES models presented herein are completely dy-
namic in space and time such that no ad-hoc constants or
adjustements are needed. This self-adaptation to the current
flow situation is very important for all types of transitional
flows. An interesting extension of the present work will be
spatial simulations with more complex flow situations like
separation.
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