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ABSTRACT

Past experimental and numerical studies have shown that
the use of wall-mounted triangular streamwise ribs can lead
to drag reduction. This phenomenon was intensively studied
during the last twenty years, and DNS of Choi et al. (1993)
provided very interesting explanations concerning the role of
quasi-longitudinal vortices in the drag-reduction mechanism.
This work concerned a flow of constant density above trian-
gular riblets of high height. Large-eddy simulations (LES)
have not been used a lot for these studies due to the com-
plex geometry. Here, we employ the immersed boundary
techniques proposed by Goldstein et al. (1995). On the
upper plane (see Figure 1), an opposite force is imposed to
model the riblets. We compare the influence of compressibil-
ity upon turbulent intensities of two sawtooth shape riblets.
In the last part, we focus on the drag reduction mechanism
in the subsonic case.

CONFIGURATION

We develop LES of a compressible channel flow. The
simulations are carried out in the case of a periodic plane
channel (see Figure 1). The size of the computational do-
main is 27H x mH X 2H, along the streamwise (2 - U),
spanwise (§ - V) and normal (2 - W) directions, respec-
tively. The numerical simulations are carried out with a
compressible Navier-Stokes solver that uses a fully-explicit
McCormack scheme which is second-order accurate in time
and fourth-order in space {(Gottlieb et al., 1976)
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where U = (p, pu1, puz, pus, pe)T, u; is the velocity vector
and e the total energy per mass unit. F; are the fluxes in
the three directions, and S is the source term. It allows in

particular to keep the instantaneous mass flux constant.

S = (0, £(t),0,0, Ucf(t))T ()

The numerical details can be found in Comte (1996).

Governing equations are non-dimensionalized by U, =
2 Up/3 (where Uy, is the bulk velocity assumed constant with
time), the channel half-width H, the wall temperature, the
viscosity at the wall, and the bulk density pp (which is also
constant). Let M, be the Mach number, based on U, and
the sound speed at the wall. The subgrid-scale model used is
the selective structure function model (Lesieur and Métais,
1996). In this model, the eddy viscosity v¢ is expressed in
terms of the local second-order velocity structure function,
and set to zero if the flow is not three-dimensional enough.
The ratio of mean eddy to molecular viscosity is close to
¥t ~ 1. No Van Driest type damping of the eddy viscosity
is made at the wall.

Table 1: Riblet configuration.

s/h st At
6.5 22 3
2 22 11

As already stressed, riblets are implemented with the
aid of the immersed boundary technique (cf. Von Terzi et
al., 2001; Goldstein et al., 1995; Lamballais and Silvestrini,
2002). The fluid feels the presence of a wall through the
normal pressure force. A solid surface can be reproduced
virtually thanks to an opposite external force. In the source
term S of Eq. (2), we add the following virtual source:

S =(0, fo, fys forufe +vfy +wfz + )7 (3)

the velocity correction being

t
fi= a/o (oui (@, 1) — pus(,)S)dt’
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In the simple case of no-slip boundary conditions, the
ui(Z, t)S term is zero. The « and 8 parameters are equal to
—4000 and 60 (values of Goldstein et al., 1998). Von Terzi
et al. (2001) propose the following thermal correction in the
compressible flow (low Mach number).
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T(Z,t)5 is the fixed wall temperature of the flat plane. The
a; and fB; parameters are of the order of 1 and —1, and
depend slightly upon the Mach number. The flow is free
behind the virtual surface. Its interaction with the real flow
is not negligible. Many near-wall corrections exist (cf. Von
Terzi et al., 2001). The surface recovered is so small in our
case than the external force is also applied within the volume
of the virtual riblets.

All the following simulations will be done at a fized s, ri-
blet spacing. We study two riblets with two different heights
h. Table 1 shows riblet configuration. It is clear that the two
Mach number considered (M, = 0.5 and M, = 1.5) modify
slightly the wall Reynolds number. We will use the rounded
value 170, computed on the flat wall. The computations
were carried out for 500 and 960 non-dimensional time unit
for subsonic and transonic cases respectively.

Validation. The code was satisfactorily validated at
M, = 0.5 against the uniform-density DNS of Choi et
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al. (1993) for one configuration of riblets : s+ = 22 and
hT = 11. Choi et al. (1993) took 20 and 10 respectively
(wall Reynolds number 180, computed on the flat plane).
Figure 2 shows the friction coefficient and the rms stream-
wise velocity. Symbols are the DNS data. The latter profiles
are displayed respectively above the riblet peaks and valleys
in wall units. We use only eleven points along the riblet
width. Our results are satisfactory despite the coarse reso-
lution. The CPU time required for this case was about only
60 hours on the NEC-SX5. We lost a little bit of accuracy
on the friction coefficient-especially on the riblet peak, due
to the geometric singularity.

RESULTS

Turbulence intensities

We first focus on the rms longitudinal velocity «', which
is a good indicator of the longitudinal velocity streaks close
to the wall. Figures 3 and 4 compare isolines of u’ (both
on the flat and ribbed walls) for two Mach numbers (sub-
sonic My = 0.5, and “transonic” My = 1.5) and two riblet
heights (ht = 3 and At = 11). With the ht = 3 riblet,
Walsh and Weinstein (1978) found experimentally in a wind
tunnel at low Mach that there was a drag increase by a fac-
tor of the order of 2%. We obtain 0 & 2% in the subsonic
case, which is a good further validation of our LES code.
In the transonic one, we find on the other hand for the low
riblet that the drag is slightly reduced of 0 ~ 2%. In a
constant-density drag-reduction configuration (st = 23 and
h* =9), Goldstein et al. (1998) noted in their DNS that the
rms longitudinal velocity has the same behaviour than for
a flat wall with a shift up of about the riblet height. They
observe also that the flow is slowed down in the riblet val-
leys, isovalues of v’ being approximatively parallel above the
ribs. This is obtained in our LES at At = 3 in the transonic
case (see Figure 4, left), as well as for the two other velocity
components. It is clear that the difference observed between
the subsonic flow at At = 3 and the corresponding transonic
flow comes from intense temperature gradients existing close
to the walls. Notice that for At = 3 and At = 11, the high-
intensity zone above riblets is more extended than above the
flat plate, with a higher norm at M, = 1.5. Indeed, let us
assume as done by Choi et al. (1993) that the main role of
riblets is to push the quasi-longitudinal vortices away from
the wall. Since it is well known that compressibility straight-
ens these vortices in the streamwise direction (Coleman et
al., 1995, Lechner et al., 2001), then the effective surface of
contact of vortices with riblets will be decreased with Mach
number, and the drag decreased. This argument does not
hold for high riblets, since vortices are already pushed very
far away from the wall, with a small contact surface on the
peaks (see Figures 3, right and 4, right). Let us mention also
experiments of Coustols (2001) for high riblets (s/h = 1)
with st > 20 in a transsonic boundary layer where the drag
is reduced of up to 2%.

About skin friction

All the following results refer to the subsonic case. At
hT = 11, we have obtained a drag-reduction ratio of about
4% (cf. fig. 2). Figure 3 (right) shows isolines of u’,
with a flattening when A7 is increased. In fact, the flow is
more modified by riblets of low than high height, which may
sound a little bit paradoxical. Figure 5 presents in this case
(h* = 3 and 11) isosurfaces of @ (the second invariant of the

velocity-gradient tensor) at a given positive threshold, which
is well known to display properly coherent vortices (see e.g.
Dubief et al., 2000). In both cases there is more small-scale
turbulence on the ribbed-wall side. We see indeed at AT = 3
a stronger asymmetry in the quasi-longitudinal vortex sys-
tem between the flat and ribbed walls. For At = 11, the
longitudinal vortices are just shifted away from the wall, as
observed already by Choi et al. (1993). It is well known from
the work of Choi et al. (1993) that, in order to achieve drag
reduction, sT should be smaller than the average diameter
(~ 25) of quasi-longitudinal vortices.

Figure 8 is reproduced Choi et al. (1993), with grey zones
representing regions of higher friction. Their areas are much
larger for s = 40 (the drag-increasing case).

Figure 6 present a vertical cross section of instantaneous
longitudinal vorticity for the two riblets. On the top, only
the appearance of small-scale vortices does reveal the pres-
ence of riblets. On the other hand, one sees on the bottom
and as already stressed a shift of the flat-wall boundary-layer
longitudinal-vortex system. A zoom in the middle of the do-
main is presented on figure 7. For ht = 3, a configuration
of drag increase, vortices stick along the “wet” surface and
penetrate into the valleys. For ht = 11, the wet surface is
reduced to the riblet peaks.

In the transonic case, the vortex topology is approxi-
mately the same.
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Figure 2: LES at M, = 0.5 with the higher riblet. Com-
paraison of friction coefficient (top) and rms longitudinal
velocity in wall units (bottom) against Choi et al.’s (1993)
numerical data. Lines (LES): straight (flat plane), dashed
(peaks), dotted (valleys); symbols (DNS): star (flat plane),
triangle (peaks), square (valleys).
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Figure 3: Isovalues of rms streamwise velocity in global co-
ordinates on the flat and ribbed wall in the subsonic flow.
From left to right: h+ = 3, flat wall, AT = 11.

Figure 4: Isovalues of rms streamwise velocity in global co-
ordinates on the flat and ribbed wall in the transonic flow.
From left to right: At = 3, flat wall, A+ = 11.
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Figure 6: Cross section of instantaneous streamwise vorticity
in the subsonic case: top At = 3, bottom hT = 11.

Figure 5: Isosurfaces of instantaneous Q criterion (Q = 0.08)
for the subsonic ribbed channel flow with two heights of
riblets: on the top At = 3, on the bottom At = 11.

Figure 7: Zoom of the last figure.
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s = 40 =20

Figure 8: Schematic diagram of drag increase and reduction
mechanisms by Choi et al. (1993).
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