DNS OF TRANSITIONAL BOUNDARY LAYER OVER COMPLIANT SURFACES

Wang Zhengyi', Yeo K. S.2 and Khoo B. C.2*
'Temasek Laboratories, National University of Singapore,
1 Engineering Drive 2, SINGAPORE 117576
2’Department of Mechanical Engineering, National University of Singapore,
9 Engineering Drive 1, SINGAPORE 117576
3Singapore-MlT Alliance, National University of Singapore,
4 Engineering Drive 3, SINGAPORE 117576

Corresponding Author: Yeo K.S., e-mail: mpeyeoks@nus.edu.sg

ABSTRACT

In this work, the complex interaction of a boundary
layer transition flow and the compliant surface is studied
using the Spatial Direct Numerical Simulations (SDNS).
This is carried out for 2D and 3D unsteady boundary layer
flow over compliant surfaces.

Our 2D simulations demonstrated that the Compliant
Induced Flow Instability (CIFI) waves could be induced
by the presence of finite compliant walls. The coexistence
of TS and CIFI wave has made it difficult to study the
behavior of the individual waves. Nevertheless, results
showed that well-designed compliant surface could reduce
the amplification rate and cause the unstable region of TS
waves. Computations for 3D linear waves over finite
membranes showed that the 3D oblique TS and CIFI
waves excited by the same frequency and same spanwise
wavenumber disturbance generally propagated at different
angles when they traveled downstream. Simulations of
subharmonic breakdown over membrane revealed that
compliant surfaces could in some instances lessen
nonlinear interactions of instability waves in a transitional
boundary layer.

INTRODUCTION

Linear and various nonlinear stability theories have
demonstrated that even simple compliant surfaces, such as
membrane/plate surfaces (Carpenter & Garrad 1985,
1986; Thomas 1992a, b) and homogeneous viscoelastic
layers (Yeo 1986, 1988), can offer a certain transition-
delay effects. There is one important limitation to these
studies however, that is, they are essentially ‘local’ in
character and could not take adequate account of global
features such as the edge effects of finite panels.
Moreover, researchers are beginning to tumn their attention
to more complex wall models (inhomogeneous walls and
walls with varying properties) in order to obtain improved
transition-delaying performance. Nevertheless, existing
linear and nonlinear theoretical methods are difficult to be
extended for investigating these complex wall models.

The strong elliptic effect of wall dynamics and flow-wall
interaction prevents the application of a semi-theoretical
numerical approach via the parabolic stability equation
(PSE). Consequently, direct numerical simulation (DNS)
has increasingly been elected as the preferred tool for
investigating the complex interaction of flow and
compliant surfaces.

The application of DNS to boundary layer compliant
surface interaction is still very much in the preliminary
stage. Current DNS studies are focused on simple
homogeneous wall models to obtain results for validation
against existing theoretical predictions. The early DNS
works of Metcalfe et al. (1991) and Ehrenstein & Rossi
(1996) employed a temporal model with periodic
boundary conditions in the stream direction. The spatial
evolution of disturbance waves was more recently studied
by Davies & Carpenter (1997) (fully-developed channel
flow), Wiplier & Ehrenstein (1997) and Wang et al.
(2001) (boundary layer flow). Davis and Carpenter (2001)
have also recently studied linear wave evolution in a 3D
boundary layer over a rotating compliant surfaces.

In this paper, we shall report on the DNS work we have
done on the spatial evolution of 2D linear waves in a
Blasius boundary layer over finite-length viscoelastic
layers, and 3D linear waves and nonlinecar wave
interaction in a Blasius boundary layer over finite
membranes.

2D WAVE SIMULATIONS

The vorticity-streamfunction formulation was adopted
for the study of the 2D waves. The finite difference
scheme with variable-order accuracy was employed for
spatial discretization. A fully implicit algorithm was used
to deal with the fluid-structure problem. For 2-D
incompressible perturbation flow field, the dimensionless
governing equations can be written in vorticity-
streamfunction form.
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where, ¢,y denote the perburbation vorticity and
streamfunction fields respectively. ¢; =0 and c;= 1, for
linear perturbation of base flow (w,v); ¢1= 1 and ¢, =1,
for nonlinear perturbation of base flow (#,7); 1= 1 and

¢, = 0, for full Navier-Stokes equations.

In above equations, #,v,{ are the undisturbed base
flow solutions of the flat plate boundary layer flow. Here,
the Blasius similarity solution is used as the base flow. Re
is the Reynolds number based on the free stream velocity
of mean flow (Uy*), the displacement thickness do* at a
suitable reference, and the kinematic viscosity (v¥):

The material of the solid layer is assumed to be elast-
dialatational and Voigt-deviatoric. Viscoelastic layers with
finite thickness h and finite length is placed at X < X < X,
-h < y < 0. Wave propagation in the layer obeys the
following nondimensional dynamical equations:
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Following Wang et al (2001}, solid and fluid governing
equations are nondimensionalized by the same reference
length at the ribbon location. The viscoelastic layer
investigated here possess the following nondimensional
parameters: p y7=1.0, Yy =2.0, Yo =0.0098, Y,
=150 where the wall reference Reynolds number
Re(L)=2><104. Zero displacement boundary conditions are
adopted on all the three sides of the compliant layer in
contact with the rigid base. At the top surface of the
viscoelastic layer, the stress boundary conditions are
given,
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where the shear stress T and normal stress ¢ are computed
from the perturbation fluid velocity fields (u,v) and
pressure field p, at the mean flow-wall interface.
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The perturbation pressure p, at the wall can be

derived by the vertical perturbation NS equation
integrating from the free stream through the boundary
layer to wall,
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The linear boundary conditions for the flow field over
compliant surfaces are given as,
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where u,, and v,, are the perturbation velocities at the wall,
which are related to the displacement history of the
compliant surface:
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The fourth order accuracy central difference scheme at
inner points and fourth order one sided difference scheme
at boundary points are employed for spatial discretizations
of solid governing equations. Uniform grid is employed
for the solid layer. Three-point backward scheme is used
for the temporal discretization of the wall equations.

The 2D waves in Blasius boundary layer over finite
viscoelastic compliant layers were studied. Computational
results showed that finite viscoelastic layers are able to
reduce the amplification rates and the shrink the unstable
region of TS waves (Fig.1). Wavenumber spectra also
agree very well with eigenvaules predicted by linear
stability theory (Yeo 1988). Therefore, the results are in
reasonably agreement with predictions of linear stability
theory (infinite-length). Fig. 2 shows the deformation of a
viscoelastic layer associated with the passage of a wave.

3D WAVE SIMULATIONS

The fractional step method for coupling 3D perturbation
Navier-Stokes equations and deformable membrane
equation is developed and described in this section. Using
this method, 3D linear wave and wave interactions inside
transitional boundary layer over compliant surfaces are
simulated.

3D Computational Algorithm

The 3D incompressible perturbation flow field is
governed by the perturbation continuity and the Navier-
Stokes equations:
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Once again, ¢; =0 and ¢, = 1, for linear perturbation of the
Navier-Stokes equations; ¢; = 1 and ¢, = 1, for nonlinear
perturbation of the Navier-Stokes equations;c;= 1 and ¢,=
0, for the full Navier-Stokes equations. In above
equations, Re is the Reynolds number based on the free
stream velocity of mean flow (U,), the displacement
thickness (8,9) at the location where the ribbon is placed,
and the kinematic viscosity (v). x', x* and x* indicate the
streamwise (x), wall normal (y) and spanwise (z)
directions, respectively. The velocity component u;, u,
and u; in the x-, y- and z- directions are used
interchangeably with u, v and w. The subscript w denotes
the value at the wall. # and # indicate the perturbation
and base flow velocity components respectively.

The finite volume method is adopted for spatially
discretizing perturbation Navier-Stokes equations on a
non-staggered grid system. Three steps fully implicit
fractional step method is developed for solving
perturbation flow field. In our work, pressure correction

algorithm is employed. First of all, momentum equations
are integrated based on pressure field at previous time
step:
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Thereafter, corrective pressure field is solved based on the
intermediate velocity field,
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Thereafter, velocity and pressure fields are updated using,

mt o+ 20t Om
WM e

@1

p=p 22)

To fully couple the perturbation flow field and solid
equations, several inner iterations are needed.

The spring-backed isotropic tensioned membrane with
foundation and damping is used in this study. The
nondimensional governing equation of this compliant
surface is,
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The finite membrane spans (Xs Xq) in the streamwise
direction. Hence at the two ends of the membrane,
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Periodic boundary condition is specified in the spanwise
direction for consistency with the periodic character of the
perturbation in spanwise direction. The perturbative fluid
velocity (Uy,Vw,Wy) at the wall is coupled with the
displacement of the surface by,
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The three points backward Euler difference scheme is
used to temporally discretize fluid membrane governing
equation. The fourth order accuracy central difference
scheme is employed for spatial discretizations of solid
governing equations.

3D Oblique waves

The simulation of 3D oblique TS waves over a finite
membrane is performed. Membrane parameters are set to
RC(L)=580, ITI(L)=1.0, T(L)=10: d(L)=0-19 k(L)=0. The
compliant membrane is placed between Re.= 941.94 and
Re=1236.04. These CIFI waves excited by the same
frequency and the same spanwise wavenumber usually
possess a different streamwise wavenumber and therefore
travel at a different angle compared with the TS wave.
Superposition of these waves causes crests of original
oblique TS wave to deviate from a straight line. (Fig. 3).
The same phenomenon is more clearly seen for a
compliant surface (Fig. 4) as the amplitudes of the CIFI
wave is generally larger at the compliant surface.

Subhamonic Breakdown

The earlier transitional behavior of Blasius boundary
layer over a finite membrane is simulated and presented in
this section. The finite membrane (m(,=12.0, T(;=6.96,
dyy=0., kgy=0. and Reqy=661) employed in our
simulation of nonlinear breakdown is selected from
Metcalfe et al (1990). The linear boundary conditions
were also employed in their temporal DNS of transitional
boundary layer over finite panel.

The comparison of perturbation velocity u contour at
t=8T for rigid wail and compliant membrane are
presented. It is observed that the A vortices over finite
membrane are much more sharper compared to the
counterpart over rigid wall (Fig. 5). Due to the longer
wavelength of the 2D TSI, the streamwise spacing of the
A vortices is longer for the membrane. Furthemore, the
nonlinear breakdown over finite membrane is obviously
less intense compared to the latter. This could be caused
by: 1) reduced amplification rate of 2D and 3D TS waves
over the memebrane surface; 2) increased propagation
angle of 3D oblique TS wave and the weaker nonlinear
interactions.

Fundamental breakdown

In this simulation, membrane parameters are the same
as those used in the subharmonic breakdown above. The
comparison of perturbation velocity u contour at t=8T for
rigid wall and compliant membrane is presented in Fig 6,
with corresponding surface deformation given in Fig 7.
The perturbation appears to be more intense for the
membrane case

The flooded contours of the total velocity w+u at
‘peak location’ for rigid wall and finite membrane (z=0,
t=8T) is presented in Fig 8a-b. Nonlinear breakdown
seems to occur earlier for membrane surface. This fact
seems to be in constrast with Metcalfe et al (1990)’s
results, which conclude that compliant membrane
generally lessen the intensity of nonlinear perturbation.
However, the comparison conducted in this study may not
be ‘fair’ for compliant surface. Based on our experiences
for simulating fundamental breakdown over rigid wall, we
learn .that the onset location of ‘first spike’ is affected by
the amplitude of perturbations. We also know that 2D as
well as 3D TS waves excited by the same outside
excitation may possess higher amplitude over compliant
surfaces than over a rigid wall due to the Hooke’s law.
This additional amplification effect of compliant surfaces
may cause the amplitudes of perturbation waves reach the
threshold value earlier over compliant surfaces than over a
rigid wall and could be the reason for the ‘earlier
fundamental breakdown’ over compliant membrane
observed in current study. Therefore, such a negative side
effect of compliant surface may not be so harmful in linear
stage (unless the wall is very soft), but may be quite
dangerous during the stage of ‘spike formation’.

REFERENCE

Carpenter P.W. and Garrad A.D., 1985, “The
hydrodynamics stability of flow over Kramer-type
compliant surfaces. Partl Tollmien-Schliching
instabilities”, Journal of Fluid Mechanics, vol. 155, p.465.

Carpenter P.W. and Garrad AD., 1986, “The
hydrodynamics stability of flow over Kramer-type
compliant surfaces. Part2 Flow induced surface
instabilities”, Journal of Fluid Mechanics, vol. 170, p.199.

Davies C. and Carpenter P.W., 1997, ‘“Numerical
simulation of the evolution of Tollmien-Schlichting waves
over finite compliant panels”, Journal of Fluid Mechanics,
vol.335, p.361.

Davis C. and Carpenter P.W., 2001, “A Novel velocity-
vorticity formulation of the Navier-Stokes equations with
applications to boundary layer disturbance evolution”,
Journal of Computational Physics vol.172, p.119.

Domaradzki J.A. and Metcalfe R.W., 1987,
“Stabilization of laminar bounary layers by compliant
membranes”, Physics of Fluids, vol.30 (3), p.695.

Ehrenstein U. and Rossi M., 1996 “Nonlinear Tollmien-
Schlichting waves for a Blasius flow over compiant
coatings”, Physics of Fluids, vol.8 (4), p.1036.

Fasel H. and Kozelmann U., 1990, “Nonparallel
stability of a flat-plate boundary layer using the compelete
Navier-Stokes equations”, Journal of Fluid Mechanics,
vol.221, p.311.

Liu C. and Liu Z., 1995, “Multigrid mapping box
relaxation for simulation of the whole process of flow
transition in 3D boundary layer”, Journal of
Computational Physics, vol.119:(2), p.325.

Metcalfe R.W., Battistoni F., Orzo S. and Ekeroot I,
1991, “Evolution of boundary layer flow over a compliant
wall during transition to turbulence”, Proceedings of
Royal Aeronautical Society, p.36.1

—872—



Thomas M.D., 1992a, “On the resonant triad interaction
in flows over rigid and flexible boundaries”, Journal of
Fluid Mechanics, vol. 234, p.447.

Thomas M.D., 1992b, “The nonlinear stability of flows
over compliant walls”, Journal of Fluid Mechanics, vol.
239, p.657.

Wang Z., Yeo K.S. and Khoo B.C., 2001, “Numerical
simulation of 2D Tollmien-Schlichting waves over finite
membrane”, Proceedings of 9" Annual Conference of the
CFD Society of Canada, p453.

Wiplier O. and Ehrensein U., 2000, “Numerical
simulation of linear and nonlinear Disturbance evolution
in a boundary layer with complaint walls”, Journal of
Fluid and Structures, vol.14, 2000, p.157.

Yeo K.S., 1986, “The stability of flow over flexible
surfaces”, Ph.D. Thesis, University of Cambridge.

Yeo K.S., 1988, “The stability of boundary-layer flow
over single- and multi-layer viscoelastic walls”, Journal of
Fluid Mechanics, vol. 196, p.359,

FIGURES

0.00015

0.0001

En pums

5€-05 |-
3 o

-5E-05

-0.0001 |-

-0.00015 L

) S Lo | S PRI T
200 400 600 80O
x

sE-05 3
aeosE
3E-08 -
2e0s |
1€-05 F
3 oF
-1e-05 |
-2E-05 E

-3e-0s |-

-4E-08 [

- 4 E 1 " 1 i 1
SE-05 200 400 600 800
x

(b)

Los

o

oes

0.7

os

0.4

03

M U L it s |

ozf

0.1k

i

@
Fig 1. Computational results for 2D unsteady boundary
layer over volume-based wall. (a)Comparison of velocity
u distribution in a boundary layer over a viscoelastic layer
(solid line) and rigid wall (dashed line) at 3=1.05. (b)
velocity u at wall. (c)Wavenumber spectrum for velocity u
at y=1.05 (Solid line for viscoelastic layer, dashed line for
rigid wall). (d) Wavenumber spectrum for velocity u at
wall (volume-based wall).
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Fig.2. Defomation of solid layer (scale factor 100,000)
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Fig 3. Comparisons of perturbation velocity u at y=0.56. ()
3D oblique wave over rigid wall, (b) 3D oblique wave
over finite membrane

Fig 6. Comparison of perturbation velocity u contour at
(t=8T) for rigid wall (a) and compliant surfaces, (b) during
fundamental breakdown.

Fig 7. Membrane displacement during fundamental
breakdown (t=8T).

(b)
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Fig 4. Membrane displacement (a) displacement
distribution (b) contour of membrane displacement
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Fig 8. Comparison of total velocity u+u countour (flood
based) at z=0, t=8T during fundamental breakdown. (a)
rigid wall, (b) finite membrane.

Fig 5. Comparison of perturbation velocity u contour at
(t=8T) for rigid wall (a) and compliant surfaces (b) during
subharmonic breakdown.
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