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ABSTRACT

This paper proposes to use a newly developed lattice Boltzmann
technique to simulate the wake of a streamwise oscillating
cylinder in the presence of a downstream stationary cylinder.
The oscillating frequency ratio f,/f;, varies between 0 and 1.8,
where £ is the oscillating frequency of the upstream cylinder and
J; 1s the natural vortex shedding frequency of an isolated
stationary cylinder, and the oscillating amplitude 4 is fixed at 0.5
cylinder diameter, D. Three typical flow structures, depending
on f./f;, have been identified at the cylinder center-to-center
spacing L/D = 3.5, which are in excellent agreement with
experimental data. The flow structure remains unchanged for the
same f/f; as L/D is increased to 6.0, but changes drastically at a
low f/f; for L/D = 2.0. It is proposed that, beyond a critical L/D,
vottices are formed between the cylinders and the flow structure
is independent of L/D. But, below the critical L/D, the free shear
layers separated from the upstream cylinder may reattach on the
downstream cylinder, thus leading to a different flow structure
from that above the critical L/D despite of the same f./f, and A/D.
The lift and drag coefficients associated with the two cylinders
are examined in detail for each flow structure.

1. INTRODUCTION

Flows around multiple structures are frequently seen in
engineering. As the Reynolds number exceeds a critical value,
the flow will become unsteady and vortices will shed alternately
from the two sides of a structure. The alternate vortex shedding
may induce a structural oscillation, which may affect the wake
formation and impact upon fluid dynamics around downstream
structures. It is of both fundamental and practical importance to
study the possible influences of the structural oscillation on the
downstream flow. The simplest model for such study is a
two-cylinder system, where the two cylinders are either in
tandem, side-by-side or staggered arrangements. In the past,
most studies focused on the transverse oscillation of one single
or two side-by-side cylinders (e.g. Zhou et al. 2001; 2002),
perhaps because the lift force is frequently predominant over the
drag force. However, the drag force can be important and even
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exceed the lift, e.g. in the case of a lightly damped structure in a
water cross-flow. The experimental or numerical data of the
effects of a streamwise oscillation cylinder on a downstream
cylinder wake have been scarce.

Xu & Zhou (2002) made perhaps the first attempt to examine
such effects experimentally. As the cylinder-oscillating
amplitude was fixed at 0.5 cylinder diameter, they have
identified three flow regimes as the frequency ratio, f,/f;, varied
between 0 and 2, where f, is the oscillating frequency of the
upstream cylinder and f; is the natural vortex shedding frequency
of an isolated stationary cylinder. They observed a symmetric
binary vortex street for 1.6 < f/f; < 2 and alternative vortex
shedding from both cylinders for 0.8 < f,/f; < 1.6 and 0 < f/f; <
0.8, though the flow structure corresponding to fo/f; = 0.8 ~ 1.6 is
totally different from that at £/f; = 0 ~ 0.8. However, due to the
limitation of experiments, many aspects of the physics for this
flow remain to be clarified. For example, there was insufficient
information on how the oscillating amplitude of the upstream
cylinder and the spacing between the cylinders would affect the
flow structure; there was no data on pressure field; the
dependence on the flow regimes of the drag and lift forces on the
cylinders was not measured.

The present work aims to conduct a numerical investigation
on this flow using the lattice Boltzmann method (LBM), which
is developed in the last few years for computational fluid
dynamics (Chen and Doolen 1998), and to complement the
experimental investigation by Xu and Zhou (2002).

2. LATTICE BOLTZMANN METHOD

Unlike the conventional direct numerical simulation (DNS)
based on the discretization of the Navier-Stokes equations, LBM
is based on microscopic model or kinetic equation for a fluid
system. Briefly, one considers a fully discrete space-time
kinetics of imagined fluid particles moving along a regular
lattice and colliding at the lattice nodes, following pre-specified
local "collision rules™:

fix+eALt+ AN - £i(x,0)=Q,(f(x,0)), )

where f; (x,?) is the distribution function (DF) of fluid particles
with a velocity e; at position x at time ¢, and Q, is the collision
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operator, which determines the scatter rate of /.. One simple
so-called BGK operator:

-1 e . . .
Qi =7 (fl —fi(”’) ), where 7 is the relaxation time and

collision operator is the

fi(eq) is the equilibrium distribution function (EDF). The

density and velocity of the fluid are defined in terms of the DFs,
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With an appropriate lattice and EDF, the Navier-Stokes
equations and continuity for the incompressible flow can be
derived from LBM in the macroscopic time and space scales,
viz.

Vau=0
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In(3), p= Cfp is the pressure and V = CS2 (T—O.S)At
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. L 2
is the shear viscosity, where C; is a model-dependent

parameter.

LBM is characterized by a clear picture of the physics of
fluids, the natural parallelism, and ease to handle interactions
between fluids or phases (Chen & Doolen 1998). Furthermore,
since the pressure is determined from the density through the
equation of state for ideal gases at each time step, LBM is much
less demanding for computational time, compared with other
numerical methods. The reliability and efficiency of LBM have
been well demonstrated by a number of studies in various fields.
Ladd (1994) managed to apply LBM to a system involving
moving bodies in the study of particle suspensions. Aidun et al
(1998) and also Qi (1999) improved Ladd’s method. The present
technique has been developed based on Aidun et al.’s method.
However, a new cylinder boundary treatment is presently used in
the context of simulating a flow around an oscillating cylinder.
Most of previous studies, including Aidun et al.’s method,
specified the curved boundary of an object by discrete points at
the mid-point between the adjacent nodes of a lattice, which
often results in a jagged boundary even for a physically smooth
surface. Guo et al. (2002) proposed a boundary treatment for a
curved boundary. This treatment applies extrapolation to the
non-equilibrium part in DF and preserves the accuracy of the
physical boundary without generating a jagged boundary. This
treatment is presently used. The second improvement over
Aidun et al.’s method is that the object can move fast so that
during one time step the object can move a distance larger than
one grid spacing. It is well understood that as the object moves in
the fluid, a lattice node previously occupied by the object
(referred to as Solid Node, SN) can become a node occupied by
the fluid (referred to as Fluid Node, FN) in the next time step and
vice versa. One must specify the distribution functions, density,
and velocity associated with these new fluid nodes. In Aidun et

al’s method, the physical variables associated with a new fluid
node are approximated by those of its nearest neighboring fluid
nodes. However, this approach is only applicable to the case
when the object moves slowly so that at least one of its nearest
neighbors is a fluid node before and after one time step. For a
fast moving object, a cluster of new fluid nodes may be produced,
and perhaps some of them are surrounded by new fluid nodes,
and the unknown variables cannot be determined by
interpolation method. In this case, we directly assign the object
velocity to the new fluid nodes, and the DFs are set to be its
EDFs with the constant density.

For the purpose of comparison, numerical simulations are
carried out in a two-dimensional space at the same conditions as
Xu & Zhou (2002)’s experimental data. Two circular cylinders
of an identical diameter, D, in a cross flow have a
center-to-center spacing of 3.5D, arranged in tandem. The
upstream cylinder oscillates harmonically in the streamwise
direction at a fixed amplitude of 4/D = 0.5. The Reynolds
number, Re, based on D and the free-stream velocity U is 150 ~
300 (the flow is essentially laminar) and f./f; ranges between 0.5
and 1.8. The computational domain is given by a 40Dx20D
rectangular area.

3. PRESENTATION OF RESULTS
31LID=3.5

Figure 1 compares the calculated flow structure with
experimental data (Xu & Zhou 2002). The slight difference in Re
between numerical calculation and measurement should not
invalidate the comparison since 4/D and f/f; are the controlling
factors of the flow around an oscillating cylinder (Karniadakis &
Triantafyllou 1989) and Re is less important. The three flow
regimes based on the distinctive flow patterns identified by Xu
& Zhou (2002) are reconfirmed numerically. The excellent
agreement in the flow structure between the numerical and
experimental data provides a validation for the present numerical
scheme. In all cases, vortex shedding from the upstream cylinder
is locked on with the cylinder oscillation.

At f/f; = 1.8 (two top plates in Figure 1), vortices shed from
the upstream cylinder are symmetrically arranged; each structure
embraces a pair of counter-rotating vortices (binary vortices).
The flow behind the downstream cylinder is characterized by a
binary street, consisting of two inner rows of alternately
arranged vortices and two outer rows of symmetrically arranged
binary vortices. The spatial arrangement of vortices about the
centerline results in a lift coefficient, C;, of no more than 0.2 on
either cylinder (Fig 2a). The drag cocfficient, Cp, on the
downstream cylinder is small but very large on the upsiream
cylinder (Fig 2b). Correspondingly, the time-averaged lift

coefficient, C 1 and root mean square value, C 1 are small on

both cylinders (Table 1). On the other hand, the time-averaged
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drag coefficient, C p - and root mean square vatue, C, , are

both very large on the upstream cylinder. Although 6 p onthe
downstream cylinder is 0.46, smaller than that (about 1) on an
isolated circular cylinder, the corresponding C’D reaches 0.48,

one order of magnitude larger than its counterpart of a single
cylinder (e.g. Chen 1987).

As fJ/f; reduces to 1.08, alternative vortex shedding occurs
from both cylinders (middle two plates in Fig 1). The flow
structure behind the downstream cylinder is characterized by
two rows of vortices: one consists of single vortices, and the
other consisting of counter-rotating vortex pairs. This would be
clearer if the flow field is extended further downstream (not
shown here). The maximum C; and Cp (Fig 2b) on the
downstream cylinder increase significantly, compared with f./f;

= 1.8. While the corresponding C ; 1 small, C}‘ increases

greatly, exceeding that (0.45 ~ 0.75 for Re = 200 ~ 700, Chen
1978) on a single cylinder, as a result from alternating vortex

shedding associated with both cylinders. Interestingly, C p as

well as C;) climb considerably.

For fJf; = 0.5, alternative vortex shedding occurs for both
cylinders. The successive vortices shed from the upstream
cylinders will hit the downstream cylinder alternatively, forming
a single staggered street downstream. While the maximum Cp
on the downstream cylinder is smaller than that at J/f = 1.08,

the maximum C, increases marginally. Accordingly, C p and

Cb reduce appreciably, and CVL increases slightly.

Zdravkovich (1987) classified flows around two tandem
stationary cylinders into three flow regimes based on the
behaviors of the free shear layers separated from the upstream
cylinder. The free shear layers do not reattach on the downstream
cylinder and roll up behind it to form the vortex street for [ < /D
< 1.2 ~ 1.8, where the upper limit is dependent on Re; they
reattach on the upstream side of the downstream cylinder for 1.2
~1.8<L/D<3.4~38 When L/D exceeds 3.4 ~ 3.8, the shear
layers roll up alternately, forming vortices between the cylinders,
both cylinders generating vortices. Evidently, the flow structures
at L/D = 3.5, shown in Figure 1, fal] into the third regime, that is,
vortices are generated between the cylinders and behind the
downstream cylinder, irrespective of the £/f; value.

3.2L/D=6.0

At L/D = 6.0, the shear layers separated from the upstream
cylinder are expected to have sufficient space to form vortices
before reaching the downstream cylinder. Therefore, given the
same A/D, the flow structures are likely to resemble those at /D
= 3.5. The flow structures (Figure 3) are indeed qualitatively the
same as those in Fig 1 for the same £,/f,. Nevertheless, there is a
slight increase in the maximum spanwise vorticity concentration

due to a larger L/D. For example, the maximum COZD/U

increases from 1.09 at L/D =3.5to 1.15 at L/D = 6 for £/f,= 1.8,
from 0.35 at L/D = 3.5 10 0.63 at L/D = 6 for £/f, = 1.08, and from
0.25 at L/D =3.5t0 0.5 at L/D = 6. The drag and lift coefficients

are included in Table 1. Given the same f/f, C'L is rather
comparable for L/D = 3.5 and 6.0. Compared with L/D = 3.5,
C p 1s slightly larger on both cylinders, but C;) is appreciably

smaller particularly on the downstream cylinder.
33L/MD=2.0

At f/f; = 1.8, the shear layers separated from the upstream
cylinder manage to form two binary structures, symmetrically
arranged about the centerline, before reaching the downstream
cylinder. As a result, the flow structure (Fig 4a) at L/D = 2.0 is
qualitatively the same as that (Fig 1) at L/D = 3.5. Expectedly,
the drag and lift coefficients (Table 1) at L/D = 2 behave quite

similarly to those at L/D = 3.5 except C'D on the downstream

cylinder which is larger due to a smaller L/D.

As f/f; reduces to 1.08, the rolling-up shear layers separated
from the upstream cylinder reattach on the upstream side of the
downstream cylinder before completely forming vortices (Fig
3b). The flow structure between the cylinders is thus not quite
the same as that at L/D = 3.5. Nonetheless, the flow structure
behind the downstream cylinder is qualitatively the same (c.f.
Fig 1). The difference in the vortex formation associated with the
upstream cylinder leads to a significant difference in the drag

and lift coefficients between L/D = 2.0 and 3.5. C;) and C.L at
L/D =2 (Table 1) on both cylinders are almost halved, compared
with those at L/D = 3.5. Furthermore, CD at L/D = 2.0 is also

reduced, in particular on the downstream cylinder.

A further reduction in f/f; to 0.5 results in a completely
different flow structure. The two free shear layers separated from
the upstream cylinder (Fig 3¢) now roll up symmetrically about
the centerline and, before the complete formation of vortices,
reattach on the upstream side of the downstream cylinder. As a
matter of fact, the free shear layers also tend to separate,
symmetrically with respect to the centerline, from the
downstream cylinder. Consequently, the flow structure behind
the downstream cylinder is rather different from thatat L/D =3.5.

Consequently, C'D and CVL on both cylinders are drastically
reduced, down to about nearly 20% of those at L/D = 3.5. gD

on both cylinders also drops substantially; in fact, a negative
thrust occurs on the downstream cylinder.

4. CONCLUSIONS

The effects of a streamwise oscillating cylinder on a downstream
cylinder wake has been numerically investigated, which leads to
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following conclusions.

1. A LBM technique has been developed. One of the major
advantages of this technique is ease to handle the moving
boundary. The calculated flow is in excellent agreement with
measurements, thus providing a validation for the present
numerical technique.

2. The numerical investigation reconfirms Xu & Zhou
(1992)’s experimental findings of three typical flow structures as
ff; varies between 0 and 1.8 (L/D = 3.5 and A/D = 0.5).
Correspondingly, the mean and fluctuating drag and lift
coefficients vary significantly for different flow structures.

3. As L/D exceeds 3.5, the flow structures are essentjally the
same as those at L/D = 3.5 for the same f./f;, which may be

identified with one flow regime, which is characterized by the
complete formation of vortices between the cylinders. At L/D =
2.0, the flow structure is still similar to that at L/D = 3.5 for f/f;
=1.8 since the free shear layers from the upstream cylinder again
form vortices before reaching the downstream cylinder.
However, as f./f; reduces to 1.08, the free shear layer
reattachment on the downstream cylinder occurs, leading to a
different flown structure between the cylinders. At f./f; = 0.5, the
free shear layers separate symmetrically from both cylinders. As
a result, the flow structure is totally different from that at L/D =
3.5 and the mean and fluctuating drag and lift coefficients are
also drastically different.

Table 1. Drag and lift coefficients for different f/f; and L/D (4/D = 0.5).

Upstream cylinder Downstream cylinder
LD 1 CD CL CD CL CD CL Cp CL
0.5 1.54 0.000 0.505 0.540 0.988 0.000 0.357 1.02
6.0 1.08 | 2.084 0.000 1.397 1.602 1.030 0.000 0.292 0.714
1.8 1.794 0.000 3.449 0.052 0.550 0.000 0.084 0.085
0.5 1.37 0.00 1.43 0.597 0.77 0.00 0.93 1.003
35 1.08 | 1.99 -0.027 2.41 1.499 1.08 -0.095 1.22 0.96]
1.8 1.62 0.000 3.71 0.084 0.46 0.000 0.48 0.091
0.5 1.263 0.000 0.541 0.110 -0.166 0.000 0.294 0.116
2.0 1.08 | 1.676 0.000 1.376 0.820 0.373 0.000 0.736 0.490
1.8 1.69 0.000 3.50 0.035 0.4667 0.000 0.7692 0.043
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Figure 1 Left-hand side: positive (dashed line) and negative (solid line) vorticity contours from numerical simulation
(Re=150); right-band side: streaklines from Xu & Zhou (2002)’s-flow visualization in a water tunnel using the LIF
technique. 4/D = 0.5, L/D =3.5; f./f, =1.8 (Re = 300), 1.08 (300), and 0.5 (150) from top to bottom.
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(a) (b) ©
Figure 2 Time histories of the drag and lift coefficients of the upstream and downstream cylinder with A/D = 0.5, L/D=3.5.
(@) f2/f; = 1.8, (b) 1.08, (c) 0.5. Dashed line: upstream cylinder; Solid line: downstream cylinder.

Dmin™ -1 15: Drax™ 1.15, dw= 0.023 DOmin— '0.58, Omax— 0.60, Aw= 0.024 WOmin™ -0.5, Omax— 046, Aw=0.024
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Figure 2 Time histories of the drag and lift coefficients of the upstream and downstream cylinder with 4/D=0.5, L/D =3.5.
(a) f./f, = 1.8, (b) 1.08, (c) 0.5. Dashed line: upstream cylinder; Solid line: downstream cylinder.

Oin=~1.17, Opa=1.17, A= 0.03 Oin=-0.54, @Opar= 0.44, Aw=0.028 Opin= -0.35, Wmax=0.35, Aw=0.014
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(b) ©

Figure 4 Positive (dashed line) and negative (solid line) vorticity contours from numerical simulation: (a) f;//; = 1.8; (b) 1.08;
(¢)0.5. 4/D=0.5, Re=150, L/D =2.
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