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INTRODUCTION

In recent years, the generation and collapse process of
the coherent structure in a turbulent flow have been ob-
served in many experiments and numerical simulations (see
Holmes et al.(1996), Silva and Metatis(2002a) for example).
Since these coherent structures cause the oscillation, the fric-
tional drag and the sound noise, etc., the understanding of
these physical characteristics is very important for indus-
trial applications. In this study, we adopted a plane jet
which is fundamental and easy to handle as a research sub-
ject of the coherent structure. As the experimental technique
to extract the coherent structures, the Karhunen-Logve ex-
pansion (hereafter, called the KL expansion) which is also
referred to as POD (Proper Orthogonal Decomposition) is
an useful mathematical tool. It is known that the KL ex-
pansion can extract the spatial eigenfunctions(i.e., 'modes’)
which represent the coherent structures if they have a dom-
inant percentage of the turbulent kinetic energy (Holmes et
al., 1996). In our last paper (Sakai et al., 2002b), we reported
the downstream change of distributions of the eigenvalues
and the eigenfunctions in the cross-streamwise direction only
by the KL expansion. In this paper, mainly by the combi-
nation of the KL expansion and the Fourier transform, the
structure development of a plane jet has been investigated
from a viewpoint of frequency space besides the physical
space. Further, the shear-stress cospectrum and spatial cor-
relation of velocity are examined and the jet structure is
discussed from a viewpoint of these joint statistics.

SUMMARY OF THE COMBINED ANALYSIS OF THE KL
EXPANSION AND THE FOURIER TRANSFORM

By the combination of the KL expansion and the Fourier
transform, the orthogonal decomposition for both space
and frequency can be perfomed (George(1990), Delville et
al.(1991)). In this study, the KL expansion was made to the
cross-streamwise direction (22 direction in figure 2) and the
Fourier transform was applied to the time space.

The problem to solve may be written as follows:

/ R(z2, 7, 7)™ (2p, 7)dzy = A (1) (g, 7), (1)
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where 7 =t —t' is the time difference, R(z2,z},7) is the
two-point correlation of the velocity component, i.e., u (the
x1-component, see figure 2), (") (x2,7) is the eigenfunction
in the (z2,7)space and A(™)(7) is the eigenvalue. Now we
describe the time Fourier transform of R, %(™) and A(™ as

®, #(™ and A", respectively. For instance, R(x2,zh,7) is
transformed as follows,

(I)(:Ez, wl27 f) = /R(z% zl27 T)e_izﬂdeTy (3)

where f is the frequency and ®(z2,z5, f) becomes a cross-
spectrum. After performing the time Fourier transform of
equation (1), we obtain the following equation

/I‘p(m, o5, £)¢(™ (2h, f)dzy = A (£)™ (22, f). (4)

Since in the present experiments the velocity field was mea-
sured by the hot-wire probes, the kernel in equation (4) can
be known only at discrete positions where probes are set up.
Then the equation (4) can be replaced by the discrete eigen-
value problem of the matrix ® which has the eigenvalue A("™)
and the eigenfunctions ¢(*). Here we must solve the com-
plex eigenvalue problem because each element of the matrix
® is a complex number. But since ¢ is the Hermitian ma-
trix, the eigenvalues are real numbers and the eigenfunctions
becomes complex functions. The KL expansion provides an
important property that the turbulent kinetic energy can be
expressed as the sum of the eigenvalues, i.e.,

= [ {u?)dz = ().
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n,f

Therefore the eigenfunction with the maximum eigen-
value contains the largest amount of kinetic energy.
Usually, according to the magnitude of the eigenvalue,
the eigenvalue and eigenfunction are ordered such that
(AD, ¢y (A@) 6@, ... (A7) $(")). Using eigenvalues
A™) and eigenfunctions ¢(™) obtained by this analysis, the
power spectrum S is reconstructed from the following equa-

tion
o o]
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EXPERIMAENTAL APPARATUS AND CONDITIONS

Figure 1 shows the sketch of the experimental apparatus.
The jet was issued from the skimmer which has the hight
of d = 12mm and the aspect ratio of 19.7 (see figure 2).
The Reynolds number Re{= Upd/v) is adjusted to 16,000
where the exit velocity Up is about 20m/s. For the velocity
measurements, the X-type hot wire probe was used. The
tungsten wire of 5um was attached with the thin tip of
the piano wire of a diameter of 0.5mm by means of the
spot welding. Figure 2 shows the coordinate system. The
streamwise (downstream) coordinate is z1, the vertical
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(cross-streamwise) coordinate is 2 and the spanwise coor-
dinate is 3. Firstly the one-point measurements have been
made along the jet centerline and in the cross-streamwise
direction at several streamwise locations, i.e., at 21 /d = 1.0,
2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 15.0, 20.0, 25.0, 30.0,
35.0, 40.0. Next the two-point measurements have been
performed, and the data examined by caluculating the
spatial correlation or making the combined analysis of the
KL expansion and the Fourier transform. The locations of
the two-point measurements are z1/d = 2.0,3.0 (in the po-
tential core region), 4.5 (in the beginning of the interaction
region), 6.0 (in the end of the interaction region), 10.0 and
20.0 (in the self-preserving region). The 21 measurement
points are set up in one section and the interval of each
measurement points is adjusted to 2.556/10 (b:half-width of
the radial profile of the mean streamwise velocity). The
cross-spectrum is calculated from the discrete finite samples
by means of FFT. Because of the sampling frequency
10kHz, the frequency domain of the cross-spectrum is
limited to 5kHz of the Nyquist frequency. The frequency
resolution Af is about 2.4Hz which is obtained by deviding
the Nyquist frequency into 2048(=211) parts. Consequently,
the eigenfunctions A(™)(f) of 2047 except for f =0.0Hz are
caluculated from the cross-spectrum matrix of 21x21.
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Figure 1: Experimental apparatus
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Figure 2: Coordinate system

FUNDAMENTAL CHARACTERISTICS OF A PLANE JET
IN PRESENT EXPERIMENTS

The first moment (the mean streamwise velocity U and
the mean cross-streamwise velocity V') and the second mo-
ment (the streamwise r.m.s. velocity v’ and the cross-
streamwise r.m.s. velocity v') of the jet velocity field are
investigated. Although these figures are not shown here, we
ascertained that the centerline streamwise mean velocity Up,
for z1/d > 6.0 is approximated by

([{J_’;‘)—z =013 (fdl +3.4). M

Then the half-width b for z1/d > 6.0 is approximated by

(g) =011 (%1 + 2.6) . ®)

The cross-streamwise profiles of the first moment and the
second moment show the similarity for z1/d > 6.0 and
z1/d > 10.0, respectively. Figure 3 shows the profile of
Reynolds stress 4v. The profile becomes nearly similar for
z1/d > 10.0 and the peak value exists at z2/b ~ +0.65.
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Figure 3: Reynolds stress profiles

ANALYSIS OF THE JOINT STATISTICS

Shear-stress cospectrum
The cross-spectrum Sy (f) for the Reynolds shear-stress
wv is generally a complex function

Suw (f) = Kuv(f) - iQu’u (.f); (9)

where Ky, (f) is a real part and Qu.(f) is an imaginary
part, and then Ky, (f) and Qu»(f) are respectively called a
cospectrum and a quadrature spectrum. Figure 4 shows the
downstream variation of the shear-stress cospectrum near
the position of the peak of Reynolds stress and near the
centerline at several streamwise locations. The ordinate is
normalized by the v/, v’ and the integral time scale T,r
of u. The cospectrum near the position of the peak of the
Reynolds stress exhibits apparently the -7/3 power range
at z1/d = 6.0, but the -7/3 power law becomes obscure at
z1/d = 20.0 and 40.0. On the other hand, the cospectrum
near the centerline shows almost the similar distribution at
each downstream location and does not exhibit the -7/3
power law. This reason is that the -7/3 power range ap-
pears only when both the energy-dissipation rate and the
mean-shear rate OU/8z2 have played important roles in
characteristics of the turbulent field. The influence of the lo-
cal mean-shear will become small in the larger downstream
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region and the mean-shear has not any explict effect on the
cospectrum at x1/d ~ 40.0. It is a future subject to inves-
tigate the relationship between the -7/3 power law and the
structure of a plane jet.
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Figure 4: Downstream variation of the cospectrum Ky (f)

Spatial correlation of the velocity

Figure 5 shows the spatial correlation coefficient of the
velocity in three regions. The spatial correlation coefficient
is defined by the following equation

Uq (127 t)ui (mlza t)

——
\/u? (127 t) \/u? (1:'2, t)

Rujui(r) = (10)

where r = zf, — 3 is the probe interval, and i is 1 or 2
(the summation convection is not used here). We also u
and v instead of u; and uz. The contour lines in this fig-
ure are drawn for every 0.1 and show 1.0 in the probe’s
position, where the abscissa and ordinate take the same
value. It is found that the correlation patterns are differ-
ent in each region. Since the pattern in the interaction
region (figure 5(b)) has both features of the potential core
region and the self-preserving region, it turns out well that
this location is in the transition region. On opposite sides
of the jet centerline, the u-correlation Ryu becomes neg-
ative and the v-correlation R, becomes positive in the
self-preserving region (figure 5(c)). This feature in the
self-preseving region has been also confirmed by other in-
vestigators and this can be attributed to the ’jet flapping
phenomenon’ (antisymmetric array of counter-rotating vor-
tices). The experimental results also show that the values
of Ryu at (z2/b,x4/b) = (£0.5,¥F0.5), (£0.75,F0.75) and

(£1.0,F1.0) become negative at z1/d = 10.0 and the val-
ues at (z2/b,x5/b) = (£0.5,F0.5) and (40.75,F0.75) be-
come negative at z1/d = 20.0. So, we invetigated the
downstream variation of spatial correlation Ry, and Ry,
at (z2/b,25/b) = (40.5,F0.5) and (+0.75,F0.75) (figure
6). It is found that the spatial correlation in the poten-
tial core region takes the sign opposite to the one in the
self-preserving region. So it is considered that the counter-
rotating vortices are formed symmetrically for the jet center-
line in the potential core region. Further, in the distribution
of u-spatial correlation in the potential core region (left
side of figure 5(a)), the lobes with the negative peak near
(z2/b,z4/b) = (£0.25,+1) and (&1,+0.25) are observed .
These negative peakes are caused by the same vortex struc-
ture which has the larger speed near the jet centerline and
the smaller speed at an outer edge.

v-spatial correlation Ry,

u-spatial correlation Ry

(2) in the potential core region (z1/d = 2.0)
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Figure 5: Downstream variation of spatial correlation Ryu;
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Figure 6: Downstream variation of spatial correlations on
opposite sides of the jet centerline. ® , Ry, at (z2/b, x5 /b) =
(£0.5,F0.5); O , Ry, at (£0.75,F0.75); A , Ry, at
(£0.5,F0.5); A , Ry, at (£0.75,F0.75).

THE COMBINED ANALYSIS OF THE KL EXPANSION
AND FOURIER TRANSFORM

Eigenvalues

Figures 7 and 8 show the downstream variation of eigen-
value distribution. The distribution of the potential core
region is different from ones of the other regions. In the po-
tential core region the contributions of the first mode and
second mode are very large as compared to ones in other re-
gions, and the sum of first three modes for v and v reaches
about 80% and 90%, respectively. Thus first a few modes can
make the dominant contribution to the fluctuation energy.
This fact suggests that the Galerkin projection of these first
a few modes into the Navier-Stokes equtions could provide a
model that can capture the large-scale dynamics of a plane
jet (Aubry(1988), Ukeiley and Glauser(1995)). Namely this
analysis method has the possibility for constructing a low di-
mensinal dynamical model of a plane jet. Figures 9 and 10
show the downstream variation of eigenvalues )\9)( f) and
)\5,1)( f) for the first mode. The ordinates are normalized
by the sum of all eigenvalues )\5‘")( f)and 3 A,(,")( f). So
the value of the ordinate shows the contribution of each fre-
quency to the fluctuation energy, so that it has the same
meaning as the normal power spectrum. In this study, the
frequency distribution of the eigenvalue is called the ’eigen-
value spectrum’. From figure 9 and 10, it is noticed that the
downtream variations of the eigenvalue spectra are very sim-
ilar to the downstream variations of the power spectra of the
u and v component (see figure 12), i.e., as the location be-
comes far from nozzle, the contribution of the low frequency
range grows and the contribution of the high frequency range
decreases. Therefore it turns out that the large-scale (low
frequency) structure becomes dominant in the first eigen-
value spectrum as going to the more downstream position.
Further, it is also noticed that the -5/3 power law appears
like the power spectrum in the self-preserving region.

Eigenfunctions

Figure 11 shows the space-frequency distribution of the
first eigenfunction ¢(1)(xz, f) in three regions. The two
lateral axs show the frequency and z2 normalized by the
half-width b, respectively. The vertical axis takes an abso-
lute value of the first eigenfunction because the eigenfuction
is a complex function. The first mode contains the largest
amount of kinetic energy and the contributions of the en-
ergy to < 42 > and < v? > are respectively 43.7%, 52.3% at
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z1/d = 2.0, 28.6%, 32.7% at z1/d = 4.5 and 33.6%, 31.6%
at 23 /d = 20.0. In the potential core region, the distribution
has the peaks at |x2/b] = 0.5 ~ 0.7 with respect to space,
but it has the peaks at various places with respect to the
frequency. Its reason seems to be that the vortex structures
produced in the potential core region have not interfered
mutually yet. In the interaction region, many large peaks
appear along the frequency axis in the high frequency range,
and it is thought that many small-scale structures are gen-
erated. Since the contribution of energy in high frequency
range is very small as shown in the first eigenvalue spctra
(figures 9 and 10), the structures in this range contain very
small energy. However, it is found that the form of over-
all structure becomes clearer than the one in the potential
core region, so it seems that in the interaction region the
reconstruction of vortex structures has been progressed and
the stable structures have been formed in the self-preserving
region. In the self-preserving region, the distribution in the
high frequency range show one peak near centerline with
respect to the space, while in the interaction region the dis-
tribution has two peaks. In the self-preserving region, while
the distribution for u and v are different in the low frequncy
range, they show almost the same distribution in the high
frequncy range. It is supposed that this should be related
with the local isotropy in the high frequncy range.

u-mode v-mode

(a)in the potential core region (z/d = 2.0)

u-mode v-mode

u-mode v-mode

(c)in the self-preserving region (z1/d = 20.0)

Figure 11: Downstream variation of the space-frequency
distribution of the first eigenfunction

RECONSTRUCTION OF THE POWER SPECTRUM

Using eigenvalues A(")(f) and eigenfunctions ¢(™ (2, f)
obtained by the combined analysis of the KL expansion
and Fourier transform, the power-spectrum S(z2, f) can be
reconstructed from equation (6). Figure 12 shows the re-
constructed spectrum at z2/b = +0.75 (at the position near
the peak of the Reynolds stress) in three regions. In this
figure, ’sum of 1st mode’ denotes the spectrum which is re-
constructed only by the first mode, and ’sum of 3rd modes’
denotes the spectrum which is reconstructed by the first
three modes. It is found that the reconstruction is efficiently
perfomed in the range that the original spectrum takes a big
value. This shows very well the property of the KL expan-
sion by which the flow structure is reconstructed in the order
of the larger energy. In the potential core region, since the
contributions of the energy for < u2 > and < v? > are re-
spectively 82.5% and 90.0%, the profile of 'sum of 3rd modes’
reproduces mostly the profile of original spectrum. It turns
out that this analysis method is more efficient to extract the
flow structure with a peak in the spectrum like in the po-
tential core region, more efficiently than the one with the
smooth spectrum like in the self-preserving region. In the
interaction region and the self-preserving region, both pro-
files of 'sum of 1st mode’ and ’sum of 3rd modes’ show the
fluctuation in high frequency range. The reason is that the
reconstruction is hardly performed in high frequency range
because the contribution from the sum of the first three
modes reaches about 60~70% and the energy is mainly used
for reconstruction of the structure with the large spectrum
value. Therefore in the self-preserving region of a plane jet,
it is expected that the fluctuation energy of the small-scale
structures contain about 30~40%.
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CONCLUSIONS

(1) In the interaction region, the shear-stress cospectrum
near the position of the peak of the Reynolds stress ex-
hibits the -7/3 power law, but the one near the centerline
does not exhibit the -7/3 power law. The influence of
the local mean-shear becomes small in the far down-
stream region, so the cospectrum near the position of
the peak of the Reynolds stress at z1/d ~ 40.0 does not
exhibit the -7/3 power law.

(2) The distributions of the spatial correlation of the ve-
locity are different in three regions. On opposite sides
of the jet centerline, in the potential core region the u-
correlation Ry, becomes positive and the v-correlation
R,y becomes negative, and in the self-preserving re-
gion the R,, becomes negative and the Ry, becomes
positive. These results mean that the counter-rotating
vortices are formed symmetrically for the jet centerline
in the potential core region and these vortex structures
are redistributed in the form of the antisymmetric array
in the self-preserving region.

(3) From the combined analysis of the KL expansion and
Fourier transform, the following conclusions are ob-
tained.

(a) From the downstream variation of the first eigen-
value spectrum, it is found that the contribution of
the low frequency range grows and the one of the
high frequency range decreases as the downstream
location becomes far from nozzle. Therefore it turns
out that the large-scale (low frequency) structure
becomes dominant in the first eigenvalue spectrum
as going to the more downstream position.

(b) In the self-preserving region, the space-frequency
distributions of the first eigenfunctions of v and v
are different in the low frequncy range. However
they show almost the same distribution in the high
frequncy range.

(c) From the reconstruction of the power spectrum, it
is found that the reconstruction of the structure
is performed in the order of the larger fluctuation
energy (the large value of the original’s spectrum).
In the self-preserving region, the reconstruction
is hardly performed in the high frequency range
because the contribution from the sum of the
first three modes is about 60~70%. Therefore
in the self-preserving region of a plane jet, the
fluctuation energy of about 30~40% is contained
in the small-scale structures.
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