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ABSTRACT

The typical coherent structure in the far wake region of a
circular cylinder is known to be shaped like a horseshoe with
Jet-like motions in its centreplane. Strong evidence is given
that similar motions exist in both the near and intermediate
wakes. Pattern recognition analysis of multi-probe hot-wire
data indicate that vortices aligned further than average from
the wake centreline exhibit the jet-like features characteristic
of the far wake structures. In fact, analysis of hot-wire
signals near the edge of the wake just 2 diameters
downstream of the cylinder indicate that the “footprint” of
the jet-like motions exists early in the formation of the
vortex street.

INTRODUCTION

There is now much evidence that the wake structures far
downstream of a circular cylinder are shaped like horseshoes
(Mumford, 1983; Ferre & Giralt, 1989ab; Giralt & Ferre,
1993; Kopp et al, 1995; Vemnet et al, 1999). In the
centreplane of these structures the motions are very much
like Grant’s (1955) and Townsend’s (1956) “mixing jets”.
Kopp et al. (2002) recently showed that these motions are
responsible for engulfment and the growth of the wake, and
that this process has a suprisingly long time scale, consistent
with the observed “frozen” behaviour of far wakes. In fact,
they found that the entrainment time scale relative to the
local wake time scale (the mean velocity half width over the

maximum velocity defect) is on the order of 10. Examining
ensemble averages of these entrainment vortices, they
concluded that the eddy time scale was also about one order
of magnitude larger that the local time scale, so defined.

The concept of self-preservation implies that the large,
energy containing eddies should be in equilibrium with the
flow. Since wakes are (at least approximately) self-
preserving by about x/d ~ 100, the turbulent structures are in
(at least approximate) equilibrium with the flow by this
location. The Karman vortices are normally visible until
around x/d ~ 50, although they are significantly randomized
much earlier in the flow. Since the time scales at self-
preservation indicate long lasting structures, one would
expect to see some structural similarity with the location
where the Karman vortices are gone. This has not been
investigated previously although Browne et al. (1989) have
shown, using spectral analysis, that a peak that is visible in
in v-autospectra or in u-v coherence functions the far wake
region is also discernible in the near wake (although with
much less energy than the Karman vortices).

There has been debate in the literature about the effect of
initial conditions on the structures observed in far wakes, but
many questions yet remain. For example, Keffer (1965)
postulated that hairpin vortices could form right at the
cylinder. Hussain and Hayakawa (1987) provided evidence
that the far wake structures are the result of bending of the
Kérmén vortices by the secondary ‘rib’ structures. Cimbala
et al. (1988) have given strong evidence that it is the

—1163—



instability of the mean velocity profile, which is the source
of the far wake structure (which they called the ‘secondary
vortex street’). Interestingly, Wygnanski et al. (1986)
speculated that the perturbation required for the instability
was the coherent structure itself. Our time-scales in the self-
preserving region are consistent with this.

The objective of the current work is to make a clearer
connection between the far wake structures with those in the
near wake. Particular emphasis is placed on the dynamically
important jet-like motions.

EXPERIMENTAL DETAILS

Figure 1 shows the experimental set up. A circular cylinder
was placed in a uniform freestream with U, = 9.0 m/s so that
the Reynolds number, based on the cylinder diameter, d =
11.6 mm, was Re = 6700. A rake of eight X-wire probes
were located at downstream positions x/d = 16, 30, 60 and
90, with a probe spacing of Az = Ay =7 mm = 0.60d. The
rake was placed vertically measuring the streamwise (1) and
lateral (v) components of the velocity.

Time is normalised using Taylor’s hypothesis and the
cylinder diameter, x*=-U,At/d. The signals were low pass
filtered at 2000 Hz and then digitally sampled at a rate of
5000 samples per second per channel for 40 seconds. In
addition, some single X-wire data was taken closer to the
cylinder in regions where the turbulence intensity and
direction of flow are such that reliable time series
measurements were possible (Kawall et al., 1983).

— %/d = 16, 30, 60, 90, 166

w,2

Figure 1. A sketch of the experimental set-up. Probe 1 is
uppermost.

A convection velocity, U, has been subtracted from the
streamwise component in the analysis presented below. The
convection velocity has been determined via trial-and-error
so that the velocity field has a pattern that coincides with the
centre of spanwise vorticity contours when a focus is
identified. In the horizontal plane only fluctuations of the
velocity vector have been used. The convection velocity for
each streamwise location is given in Vernet et al. (2002).

IDENTIFICATION OF CRITICAL POINTS

Critical points are defined as locations where the velocity is
zero so that the streamline slope is indeterminate (Perry and
Chong, 1987). Various patterns are allowed around critical
points based on the series expansion of the velocity field
around the critical point. Difficulties in detecting critical
points arise when coarsely spaced experimental data, such as

that obtained by multiple X-wire probes, are used since the
velocity gradient tensor is incomplete or poorly resolved. It
is poorly resolved because data obtained by rakes of hot-
wires are inherently coarse when compared to the size of the
region where the series expansion around the critical point is
valid. The ‘noisy background’ of turbulence in which the
critical points are embedded adds difficulty since it causes
deviation in the measured critical point patterns from the
idealised patterns.

Since identification of critical points in coarsely spaced
experimental data is uncertain, it seems natural to develop a
pattern recognition technique to identify these motions based
on fuzzy logic. Fuzzy logic was originally developed by
Zadeh (1965) as a new method to deal with uncertainty. It
allows a quantification of the uncertainty so that decisions
can be made. In traditional logic, something is either certain
or uncertain; a proposition is either true or false. In contrast,
common experience tells us that many things are partly true
and partly false at the same time. Fuzzy logic is the
mathematical formalism to handle these situations.

Clustering is a technique used to partition data sets, where
each cluster has similar features. The central value of the
cluster in the pattern space is the cluster centroid, or simply
centroid. Grouping of the data is generally done by applying
some kind of similarity function over the data set. This
function (called the membership function) gives a value, L,
of the membership of the ith individual element in the jth
cluster. A full description of the fuzzy clustering technique
to detect and classify critical points can be found in Vernet
& Kopp (2002), although the main points of the technique
are given below.

By direct observation (see Vernet & Kopp, 2002) of the
experimental data it was determined that the patterns around
the critical points have a spatial extent of about seven points
in the streamwise co-ordinate and three sensors in the
current set-up. Each of the patterns is represented by a
feature vector, X;={C;, Op... 0y}, where the elements of X
are the angles calculated from the two velocity components,
as suggested by Ferre-Gine et al. (1997). This procedure
means losing the magnitude of the velocity vectors in the
classification procedure. However, it is the curvature of the
streamlines, which is most important, and this is most easily
dealt with via the phase information. The Cclustering
procedure uses the fuzzy C-means (FCM) algorithm. This
algorithm is based on the minimisation of the objective
function, J,,

In=3 3 b, f
i=1j=1
where
i(ﬂu)’" Xj
v=fl
J=1

¢ is the number of clusters, n is the number of feature
vectors, i is the membership of vector i in cluster j, X is the
feature vector, V is the centroid (i.e., the vector that defines
the centre of the cluster, || . || is the Euclidean distance and m
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1s the fuzzy partition exponent. A larger m indicates a fuzzier
partition, while for m = 1 the partition is hard. Membership
measures the grade each feature vector belongs to one
cluster and varies between 0 and 1. The objective function,
Jin» 18 a measure of the differences between the data analysed
and the centroids weighted by Hy)". Each feature vector
belongs to all the clusters of the partition in some sense and,
therefore, has a value for each cluster. The membership is

calculated from
s v

Syl

i=1

Hip =

In addition,

C

Yy =1

i=1
fori=1,23..¢c,j=12,3..n

The process is iterative with the following steps: (a)

initialize L using a random function, (b) calculate the
centroids, (c) update i and (d) calculate J,,. The steps (b) —
(d) are repeated until the difference between two consecutive
Ju 1s less than a fixed threshold. This generates a
membership matrix which is used to partition the data set.
Each feature vector is classified in the cluster for which it
has the highest membership value. The fuzzy partition
exponent (m) and the number of clusters (c¢) are selected
using,

C n
WA R &
i=lk=1
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The numerator measures the "compactness" of the clusters.
The smaller this value is, the more compact the clusters in
the partition are. The denominator measures how well
separated the clusters are with a larger value indicating
better separation. Globally, a smaller $ indicates a partition
in which clusters are compact and well separated from each
other. The minimum § provides the optimum ¢ and m values
to partition the data set.

Once the data are classified into the different clusters, a
simple ensemble average of the events in each cluster is
performed to obtain the prototypical event that characterizes
each cluster. Further details can be found in Vernet & Kopp
(2002).

ANALYSIS

Karman Vortices in the Intermediate Wake

The fuzzy clustering algorithm was applied to the current
wake data at all streamwise locations. For brevity, only the
results at x/d = 16 will be presented. The clustering
algorithm allowed for accurate alignment of similar classes
of patterns. For example, Figure 2 depicts the ensemble
average of a cluster of foci centred on the third probe (y* ~ -
0.5). The patterns identified are only associated with the
central focus, but a wider averaging window allows the
periodicity in the flow (if it exists) to be observed. This
pattern is very similar to those obtained by various phase

averaging or eddy identification techniques, and is only
shown to indicate that the behaviour of the present flow is
what would be expected, and that the present pattern
recognition technique is also working as expected. More
details can be found in Vernet & Kopp (2002) and Vernet et
al. (2002).
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Figure 2. Ensemble-averaged foci centred on probe 3.

Jet-like Structures in the Intermediate Wake

Figure 3 shows the ensemble averages of the saddle points
centred further from the centre of the wake than the average
location of the saddle points. Figure 4 shows the same
ensemble average with the local mean velocity removed.
The ensemble average (centred at x* ~ 6, y* = -3) has lost
the symmetry observed in Figure 2 with the outward lateral
velocity fluctuations being significantly larger than the
inward lateral velocities for the vortex centred between ~6 <
x* < ~8. This pattern, which is stronger downstream (see
Vernet et al., 2002), is typical of the far wake coherent
structures which make up the turbulent bulges, in particular,
the jet-like motions in the centreplane of the horseshoe
structures (Vernet et al,, 1999; Kopp et al,, 2002). The
ensemble-averaged velocity fluctuations in Figure 4 show
these features more clearly.
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Figure 3. Ensemble-average of velocities classified as
saddle points in the vertical plane at x* ~ 6 and y* ~ -3
for x/D = 16.

Continuous wavelet transforms of the u and v ensemble
averages in Figure 4 for the probe at y* ~ -3 (the sixth probe
from the top, in the plot) are depicted in Figure 5. For ~6 <
X* < ~7, there is an observed increase in energy at larger
scales (or smaller frequencies). Kiya and Matsumura (1988),
in their analysis of the incoherent signals, found that the
secondary rib structures have a significant fraction of their
energy at frequencies smaller than the Strouhal frequency,
and that this energy was concentrated in the saddle region.
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Figure 5 shows that the jet-like motions are also associated
with energy at lower frequencies. In this case, there is still a
significant fraction of energy at the main shedding
frequency, consistent with the pattern observed for the sixth
sensor (y* ~ -3) in Figure 3; however, there is significantly
increased energy at the lower frequencies. Continuous
wavelet transforms of individual patterns used in the
ensemble average indicate similar information, though with
greater variability, as would expected. Note that Kiya and
Matsumura removed the coherent motions from the signals
prior to their analyses.

Figure 4. The same ensemble average as in Figure 2,
but with the local mean (time averaged) velocity
removed from each probe.

wavelet decom. of u, channel: b

Figure 5. Continuous wavelet transform, using the
Mexican Hat, of the ensemble average for probe 6
(y* ~ -3) depicted in Figure 4.

Three-Dimensional Structures in the Near Wake

The near wake region of circular cylinders exhibits
complex flow patterns even at relatively low Reynolds
numbers. The first instability leads to the Karman vortices.
As the Reynolds number is increased, three-dimensional
instabilities begin. Williamson (1996) provides a recent,
comprehensive review for relatively low Reynolds number
flows, while Chyu and Rockwell (1996) discuss the three-
dimensional structures at higher Reynolds numbers. Our
interest here is how far upstream, towards the formation
region, can “jet-like” structures, with characteristics similar

to those observed in the far wake, be observed. To do this a
conditional averaging technique was utilized, along with the
continuous wavelet transform and the single X-wire data
taken at various locations in the near wake region.

The procedure is as follows. First, the probability density
functions of the velocity fluctuations were obtained. Using
this, a threshold was (arbitrarily) chosen for identifying the
“jets”. For example, at x/d = 16, a lateral fluctuation of -2
m/s was used. Second, since the jets are typically of 8-10
data points in duration (c.f., Figure 4), events with lateral
velocity fluctuations of larger magnitude than the threshold
for 6 points were accepted for averaging. Finally, the
“avents” were ensemble-averaged and a continuous wavelet
transform of the ensemble average was taken using the
Mexican Hat wavelet. Figure 6 depicts the resulting
ensemble average at x/d = 16 and y/d = -2 for the new data
while Figure 7 depicts the resulting wavelet transform.
These show excellent agreement with the earlier data shown
in Figures 4 and 5, although the current wavelet data is much
smoother in appearance. This analysis was performed for
data obtained from x/d = 2, 4, 6, 8, 10, 12 and 16 in the
lower half wake near the outer edge where the turbulence
intensities and instantaneous flow directions were such that
instantaneous velocity data could be reliably measured with
X-wires (Kawall et al., 1983).

jet u fluctuation

I /’\ \/\/\ |
\_/ \/’\
05F 1
1 1 1 1 1 1 4
0 2 4 6 8 10 12
jet v fluctuation
°r / \//_\/ i
05F b
RiS R
151 b
2} 4
26t L 1 L ) 1 ) 3
g 2 4 3 8 10 12

Figure 6. Ensemble average of the “jets” at
x/d 16 and y/d = -2.

Pertaining to the wavelet transforms and plots, note that the
wavelet scale (plotted on the vertical axis), a, for the
Mexican Hat wavelet, is related to frequency, f, via

f= 0.251 fsampling/f
Sumpling is the sampling frequency of the data (Hangan,
2003). Thus, for fiumpine; = 5000 and the Strouhal frequency
of 160 Hz, a = 7.8, consistent with the observations in
Figure 7. (In Figures 3 and 4, every other point was plotted
s0 that the fimpiing Was 2500 and a ~ 4.

Figures 8 and 9 depict the wavelet transform results for x/d
= 8 and 2, respectively. It is interesting to observe that
overall patterns are similar to those at x/d = 16, although
some of the details are quite different. In particular, it is
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clear that a larger and larger proportion of the energy is
concentrated at the Strouhal frequency. Hussain and
Hayakawa (1987), and others, point out that the ribs act to
deform the Karman vortices, kinking them outwards. While
we don’t have spatial ensemble averages at this location,
clearly, at x/d = 16, the footprints of the jets, as identified
with the current approach, are associated with foci which are
further from the centreline.

wavelet decom. of jet u fluctuation

Figure 7. Continuous wavelet transforms of the
ensemble averages in Figure 6.
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Figure 8. Continuous wavelet transforms of <u> and <v> at
x/d=8 and y/d =-1.5.

DISCUSSION

Using spectral analysis Browne et al. (1989) found a
broadband spectral peak at a frequency slightly lower than
the dominant Kirméan frequency in the near wake. These
authors concluded that this broadband peak was related to
the origin of the far wake structures. Examination of the
ensemble averaged velocity fluctuations in Figure 4 shows
that the pattern associated with. the jet-like motions is
slightly larger than the patterns at the nominal vortex

shedding wavelength. This is reflected by the distortion of
the stream patterns, which implies a slightly larger
wavelength for these motions and, therefore, a lower
frequency. As the flow develops, the outward kinking of the
main vortex structure would continue due to its increasing
alignment with the mean strain field (which would act to
enhance these structures through vortex stretching) and the
decreasing action of the ribs (since the strain field in which
they exist is growing weaker).

wavelet decom. of jet u fluctuation
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Figure 9. Continuous wavelet transforms of <u> and <v> at
x/d=2andy/d=-15.

Data from other flows can also help to explain the role of
the secondary rib structures in the present flow. For
example, in the wake of a porous mesh strip, Kopp & Keffer
(1996b) showed that the flow through the screen acted to
reduce the strain field between adjacent Karman vortices.
Although the Reynolds number of the flow was 5000, the
flow field was highly regular and much more two-
dimensional. Since the ribs were so weak, the Karman
vortices could decay without much interference. Horseshoe
vortices were observed in this flow in the far field, though
the spanwise vorticity at the “top” was much lower yielding
a rather different self-preserving state (Louchez et al., 1987,
Kopp and Keffer, 1996a).

The oscillating circular cylinder of Kopp et al. (2003) also
makes the main Karman vortices much more two-
dimensional. In this case, however, the vortices are stronger
than for a stationary cylinder, as are the resulting ribs. The
cylinder oscillations appear to reduce the larger three-
dimensional instabilites so that vortex dislocations are also
reduced (accounting for the increased two-dimensionality of
the Karman vortices). Although they only present near wake
data, the wake is considerably thinner than the stationary
cylinder wake, raising some questions over the precise role
of the ribs. It would appear, although more analysis and
experiments are clearly required, that the ribs need the initial
displacement of the Karman vortices, perhaps caused by the
dislocations, in order to act early in the wake.
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CONCLUSIONS

The jet-like motions, key to the engulfment mechanism in
the far wake, are observed in ensemble averages near the
outer edges of the wake at x/d = 16. Wavelet transforms of
ensemble averages indicate that “footprints” of these
motions exist in the near wake as well, even at x/d = 2. This
early formation allows the structures to come into
equilibrium with the mean flow so that cylinder wakes are
(approximately) self-preserving by x/d ~ 100. The jet-like
motions appear to be related to the rib structures observed by
many researchers. Since the far wake structures are three-
dimensional, it is natural that three-dimensionalities in the
formation of the Karman vortices play a key role in this
development.
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