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ABSTRACT

The high-speed mixing layers with convective Mach num-
ber Mc = 0.4,0.8 and 1.2 are investigated numerically. The
present results provide the flow-field structure, the similarity
of the mean quantity distributions, the characteristic of ve-
locity fluctuation and the normalized growth rates which all
agree with experimental and other numerical results. The
scaling analyse shows that the ESS prevails in the inner re-
gion of the fully developed mixing layer and compressibility
affects little on the scaling exponents. This is consistent
with the similar spectra of the velocity in the mixing layers
with different M,.

INTRODUCTION

Compressible turbulent mixing layers commonly occur in
various engineering applications such as combustion, propul-
sion and environmental flows. The original work of Brown
and Roshko (1974) on the structure of planar mixing lay-
ers triggered extensive computational (Vreman et al. 1996,
Iwase et al. 2001, Pantano and Sarkar 2002, Kourta and
Sauvage 2002) and experimental (Goebel and Dutton 1991,
Gruber et al. 1993, Debisschop et al. 1994, Barre et al.
1997, Rossmann et al. 2002) research during the past three
decades that substantiated the idea that large-scale struc-
tures control the dynamics of all free shear flows (Gutmark
et al. 1995). With increasing convective Mach number M.,
the ratio of the free-stream velocity difference to the sum of
the sound speeds, the mixing layer become highly three di-
mensional and the normalized growth rate decreased rapidly,
reaching an asymptotic value of about 0.2 for supersonic con-
vective Mach numbers. In high M, mixing layer there exist
unsteady shocklets which require much needed further stud-
ied.

Due to the limitation of computer capability, many of
the exiting numerical simulations of the supersonic mixing
layer are in 2-D or of temporal development in which the pe-
riodic conditions are applied in the streamwise direction. As
turbulence is three dimensional the 2-D simulations can only
provide limited information. While the temporal simulations
are computationally efficient, the drawbacks are that they
cannot properly account for the effects of the velocity ratio
across the layer, the divergence of streamlines, the asymmet-
ric entrainment, nor the distinct and spatially nonuniform
convection of various turbulence structures.

In the present work the 3-D spatial evolving compressible
mixing layers are investigated numerically with the simpli-
fled gas-kinetic BGK scheme to understand the compress-
ibility effect in the high-speed flow. The scheme is based
on the BGK-Boltzmann equation and many applications of
it show the good robustness and rightness (Xu 2001). The
details of the scheme and its simplification can be found in
Li (2002).

Table 1: Computational parameters

Case M1 M2 Mc Rec Re
1.9 11 04 375 200
29 13 08 525 400
35 11 12 575 600

W N =

COMPUTATIONAL PARAMETERS

In the present simulation the same grid system of uni-
formly spaced in the z and z direction and stretched in the y
direction is employed for the three cases. The computational
domain size is defined as (Lz X Ly X L,) = 350 x 120 x 30
with (Nz x Ny X N.) = 875 x 200 x 80 grid points. The ratio
of the maximal cell size to the minimal size (Aymin = 0.2)
is 10.5.

All variables are nondimensionallized by the initial vor-
ticity thickness 8,,(0), the high-speed side free stream pa-
rameters p1,a1,p1a'f. The initial momentum thickness is
given as 0,(0) = 0.25. The free stream sound speed is
set to a1 = a2 = 1, and pressure p; = p2 = 1/v, where
gas constant v = 1.4. The kinematic viscosity v = 0.001
is used for all of the simulations. Table 1 provides the
computational parameters of three cases where Re. and Re
are Reynolds numbers based on U = 0.5(U; + U) and
AU = Uy — U; respectively. The present computational
domains are large enough for the flow to achieve fully de-
veloped state, as when © = Lz, zeg/8m1 are all larger than
1500, where zeg = x(1 — U2/U1), Om1 is the momentum
thickness of the high-speed stream set to half of the total
thickness here. The criterion for z. f£/8m1 > 500 was pro-
posed by Papamoschou and Roshko (1988).

At the inflow boundary (i = 1), the flow quantities, such
as density, velocity, and pressure are prescribed, but a broad-
band forcing (Stanley and Sarkar 1997) is also superimposed
at the inlet to generate early development of the shear layer.
For the outflow (i = imax) and the two lateral side bound-
aries (j = 1 and j = jmax), Thompson's non-reflecting
boundary conditions are employed. For the outflow bound-
ary, the pressure correction discussed by Poinsot and Lele
(1992) is also applied.

The streamwise velocity profile of the inflow is given by
the hyperbolic tangent function,

u(y) = 0.5(U1 + Uz) — 0.5(Uy — Ua)tanh[0.5y/6:(0)]. (1)

The simulation is started with an initialized flow field in
which the streamwise velocity is determined by Eq. (1) and
the transverse velocity is fixed as zero value. The density
and pressure fields are uniform throughout the flow field.

RESULTS
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Statistics and Compressibility

The statistics is processed in the time about six times
of the maximal time scale T = L;/Uc. Figure 1 shows the
development of the mixing layers where one can see that the
mixing layer reaches linear region after some distance from
the upstream and the center of the mixing layer leans to the
low speed side which is often found in experiments and can
not be catched in the simulations of temporal development
mixing layer. With increasing convective Mach number, the
mixing layer shows more stable, thus much longer stream-
wise distance needed to become turbulence. But the shift of
the center increases indeed.
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Figure 1: Development of mixing layers with different M,:
(a) the normalized momentum thickness and (b) the center
of mixing layer. y. is the center of mixing layer where @
is equal to U,. The normalizing factor is defined as n =
(U1 + U2)/ (U1 — Ua).

The normalized growth rates (shown in Fig.2) calculated
from the momentum thickness in the fully developed region
decrease evidently with increasing M, which agree well with
existing numerical (Day et al. 1998, Pantano and Sarkar
2002) and experimental (Papamoschou and Roshko 1988,
Goebel and Dutton 1991, Debisschop et al. 1994, Barre et
al. 1997, Rossmann et al. 2002) studies.

It is well known that developed turbulent mixing layer
evolves self-similarly which can be verified in Fig. 3. The
collapse of the data is excellent and the present results show
a good agreement with either numerical results of Pantano
and Sarkar (2002) (M. = 0.3), Rogers and Moser (1994)
or experiment data of Bell and Mehta (1990). The latter
two are on the incompressible shear layers. A test case is
calculated with the same parameters as case 1 except for
the coarser computational mesh to examine the level of grid
dependency. The cell size is about one and a half times
larger than that in case 1. Figure 3 shows the comparisons
of the coarse and fine grid results at different streamwise
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Figure 2: Growth rates of mixing layers with different M.
where &) is the incompressible mixing layer growth rate.

locations. The results on different computational mesh vary
little showing the present grid adequate in resolving the main
flow features.

The maximal velocity fluctuation intensity decreases
with increasing convective Mach number, especially for the
transverse one and the shear stress (see Fig. 4). Compress-
ibility restrains the transverse fluctuation strongly which
leads to the decrease of the shear stress, thus the growth
rate of the mixing layer decreases. The present calculations
are in good agreement with existing results such as (Elloit
and Samimy 1990, Goebel and Dutton 1991, Debisschop et
al. 1994, Barre et al. 1997, Urban and Mungal 2001, Stan-
ley and Sarkar 1997, Pantano and Sarkar 2002) except that
the shear stress shows a little larger which may come from
that the present mesh size is not small enough to resolve the
smallest fluctuation, leading to small dissipation.

Figure 5 shows that the ratio between the shear stress
and the turbulent energy keeps constant (= 0.35) in the
inner regime of the mixing layer, which agree well with the
experimental result in Elloit and Samimy (1990) and Debiss-
chop et al. (1994). According their view, this value is very
important to the study of turbulent closure. A constant ratio
between the turbulent shear and the kinetic energy means
all the length scales are equally affected by the compressibil-
ity or supersonic character of the flows. The increase with
M. in the outer regime maybe come from the complex Mach
waves outside the mixing layer.

In the mixing layer the velocity fluctuation shows strong
intermittence, especially in the layer boundary region. There
are more fluctuations with large negative amplitude in the
high speed side region of the mixing layer and on the con-
trary more large positive amplitude fluctuations on the other
side. The present result agrees well with these experimen-
tal observations. With increasing M. the intermittence in-
creases and the position with the peak value moves outwards
which reveals the decreasing growth rate and the dramatic
variation of the flow near the layer boundary.

Coherent structure in mixing layer

Figure 7 shows the isosurface of Q, the second invari-
ant of V1, in the mixing layer upstream. It is seen there
that 3-D large structures develops from the statistically 2-D
flows. The flow loses its stability quickly in the upstream
region, then vortices occur, roll up and interact with each
other while moving downstream. The flow instability is dom-
inated by the spanwise rollers when M. = 0.4, similar to the
incompressible results of Iwase et al. (2001), while oblique
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Figure 3: Profiles of the mean streamwise velocity (a) and
the velocity fluctuation intensity (b,e,d) at different loca-
tions (Mc = 0.4). ‘Cerf’ is the error function profile which
is the first order approximation to the mean streamwise
velocity in incompressible mixing layer. The symbol ‘FG’
represents the results calculated on the fine grid and ‘CG’
on the coarse grid.
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Figure 4: Maximal velocity fluctuation intensity of the mix-
ing layers with different M,.
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Figure 5: The ratio of shear stress to turbulent energy in
mixing layers with different M.

structures play a much prominent role when M, = 1.2. From
the isosurface of Q, one can also observe the rib structures
between rollers in low M. mixing layer. But complex Mach
waves were not easily identifiable from the isosurface of Q
at high M. case although they are evidently seen easily in
the plots of pressure contours (see Fig. 8). In the mixing
layer with high convective Mach number, there may exist
shocklets (Rossmann et al. 2002). It is difficult to find a
weak shock in a 3-D flow and this requires further studied.

The information of vortex evolution can be further found
from the energy spectrum. Figure 9(a) shows the power
spectrum of streamwise velocity at different positions along
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streamwise velocity. The convective Mach numbers for ‘El-
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Figure 7: Isosurface of the second invariant of Vi (Top view,
Q@ ='0.01). From top to bottom, the pictures are for M, =
0.4,0.8 and 1.2 respectively.

the geometric centerline (y = 0). At z = 0.1L; the
vortex have begun rolling up, the spectrum is dominated
by some discrete modes corresponding to the first subhar-
monic (St = 0.02). Here the Strouhal number is defined as
St = fém(0)/Uc. At the downstream station, the spectrum
shows a shift in the peak to low wavenumbers and becomes
broad which show the growth in the streamwise. A spectral
slope about —5/3 can be seen which suggests the flow has

0

T

Figure 8: Instantaneous vorticity and pressure contours on
a spanwise section in the mixing layer with different M.
From top to bottom, the first tow pictures are the vorticity
and pressure distribution for Mc = 0.4 and the next four are
for M, = 0.8 and M, = 1.2 respectively.

achieved full development. The spectrum peaks near the
subharmonics are the result of low-frequency jitter in the lo-
cations of vortex roll up and pairing which commonly occur
in the naturally developing mixing layer. The spectra in dif-
ferent transverse regions of a mixing layer are also different
in the low-frequency part (see Figure 9b). From the high-
speed side to the low-speed side, the peak of the spectrum is
shift to the low-frequency direction and the slope becomes
larger gradually. These show that the large-scale structures
absorb energy mainly from the free streams, thus they are
dominated by the free streams. These also show that the
structures move with different velocities in different regions
and may be teared up by the strong shearing in a high M.
mixing layer.

From figure 9(c) one can find that the spectrum of the
transverse and spanwise fluctuant velocity are similar to each
other and both look like the streamwise velocity spectrum,
especially for the high-frequency part. But their slopes of
the low-frequency are slower, showing the anisotropy of the
large-scale fluctuation. This comes from the fact that the
turbulence energy is transported from the streamwise di-
rection to the transverse direction and redistributed to the
spanwise direction. The spectrum of pressure shows some
more distinct peaks which means the large structures can
be effectively described by pressure. In the mixing layers
with different M., the streamwise velocity spectra are sim-
ilar except for the peak positions in the low-frequency part
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(see Figure 9d). That is, compressibility mainly affects large-
scale fluctuations.

The present results show that in the inner region of
the fully developed mixing layer, the ESS (extended self-
similarity) (see Benzi 1995, She and Leveque 1994) prevails.
The pth-order velocity structure functions are defined as

(=9

Sp(l) =< [ov|? >=/ |6vr[PP(Sur)d(dwr),  (2)

—00

where dv; = v(t + 1) — v(t) is a velocity increment across a
distance [. Here the Taylor’s frozen turbulence hypothesis
is used, as the root-mean-square velocity fluctuations are
typically only 15% of the mean velocity difference of the
free streams. Figure 10(a) shows the extended self-similarity
in the inner region downstream of the mixing layer with
M. = 0.4. The power law can be found from the linear
dependence of Sp(I) on S3(I) which shows the ESS in this
region. It is notable that the range of ! for which the power
law behavior of Sp(l) oc ISP can hardly be observed due to
the low Reynolds number.

The scaling exponents {, are shown in figure 11 which
come from the least square fits of the ESS curves. To con-
sider the convergence of {;, with the sample size of the data,
the exponents are calculated with three-seventh, five-seventh
and the full sample size in the mixing layer with M, = 0.4:
the (p values decrease as the sample size increases. A smaller
value of (, means a larger departure from a Kolmogorov 1941
value, and hence larger intermittency effects. This is because
as the sample size increase, larger fluctuation amplitudes are
included. The present results show that even for p = 15, Cp
has converged within 1.6% for 3/7 sample size and 0.2%
for 5/7 sample size (symbols in figure 11 overlap). Thus
the present data size is adequate. With increasing convec-
tive Mach number M., the {, presents only a little decrease
revealing the increasing intermittency effects, which is con-
sistent with previous discussion. The present results show
that compressibility affects little on the scaling exponents.
The values is between the K41 value and the SL model which
is understandable since the latter two are derived under the
condition of homogeneous and isotropy.

CONCLUSION

The supersonic mixing layer with convective Mach num-
ber M = 0.4,0.8 and 1.2 are studied numerically. The
numerical results here provide the flow-field structure, the
characteristic of velocity fluctuation and the normalized
growth rates which are all in good agreement with experi-
mental and other numerical results. The ESS prevails in the
inner region of the fully developed mixing layer and com-
pressibility affects little on the scaling exponents, which is
consistent with the similar spectra of the velocity of the mix-
ing layers with different M,.
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