MODELLING OF COMPRESSIBILITY EFFECTS IN MIXING LAYER

Bertrand Aupoix
Office National d'Etudes et de Recherches Aérospatiales,
Aerodynamics and Energetics Department
BP 4025 - 2, Avenue E. Belin - 31055 Toulouse Cedex 4 - France
Bertrand.Aupoix@onecert.fr

ABSTRACT

The ability of turbulence models to predict self-similar
mixing layers is investigated. The influence of velocity ratio
is well captured but no model reproduces the sensitivity of
the mixing layer to density differences. A correction pro-
posed for boundary layer flows hardly affects mixing layer
predictions. A correction accounting for baroclinic effect is
derived but is not satisfactory. At last, compressible turbu-
lence effects are investigated. Without corrections, models
cannot predict the spreading rate reduction. Standard cor-
rections, based upon dilatational terms, predict too weak a
reduction. The sonic eddy concept is validated whatever the
turbulence model. A form suitable for Navier-Stokes codes
is proposed.

INTRODUCTION

The prediction of the spreading rate of a mixing layer
and of its entrainment remains a challenge for turbulence
models. A simple test case is the prediction of self-similar
mixing layers.

For self-similar mixing layers, the standard argument (see
e.g. Dimotakis (1991)) is that, in a frame linked to the co-
herent structures, the spreading rate is proportional to the
velocity difference across the layer, which is the only velocity
scale. In the laboratory reference frame, the spreading rate is
thus proportional to the ratio of the velocity difference to the
advection speed of the structures. This advection speed is
determined considering equilibrium of the stagnation pres-
sure at the stagnation point between coherent structures.
So, it is stated that the spreading rate depends upon three
parameters

- the velocity ratio of the two streams r = 22, where the
subscripts 1 and 2 respectively refer to high- and low-speed
streams,

- the density ratio s = ﬁf,

- the convective Mach number M, which characterizes
the compressible character of the turbulent motion. For
gases of identical isentropic exponents, it reads M, = %}%
where ¢ is the speed of sound.

This paper addresses the ability of standard turbulence
models to correctly reproduce the evolution of the spread-
ing rate with each parameter. The effect of the velocity and
density ratios will be addressed first, the réle of the com-
pressible character of the turbulent motion will be discussed
later.

COMPRESSIBLE CHARACTER OF THE MEAN FLOW

Experimental references
The standard analysis yields the following expression for

the mixing layer spreading rate
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Various mixing layer thicknesses § can be considered but
they roughly remain proportional so that the analysis will be
restricted to the vorticity thickness dy, = (u1—u2)/ ( Z—f;)mu
The spreading rate and thus the constant Cs depends upon
the experimental conditions such as incoming boundary lay-
ers, noise. .. but low speed experiments in air suggest a value
close to 0.135 (Patel (1973), Bell and Metha, (1990)). There
are very few experiments for low speed mixing layers with
gases of different densities, the main ones being due to Brown
and Roshko (1974). These experiments support equation {1)
but for a larger value of the constant Cs so that they cannot
be used to compare velocity profiles. Therefore, the valida-
tion can only be performed considering the spreading rate
evolution.

(M

Model Predictions

The ability of turbulence models to reproduce the influ-
ence of the velocity and density ratios on the mixing layer
spreading rate has been investigated using a code solving
self-similarity solutions. As the problem is one-dimensional,
grid convergence is easily achieved.

The analysis has been performed considering that the
density difference across the mixing layer can be due either
to different gases on each side or to a temperature difference.
The way the density difference is generated does not change
the predictions.

Predictions using a simple mixing length model, in which
the mixing length is assumed constant and proportional to
the mixing layer thickness, are given in figures 1 and 2. The
symbols correspond to relation (1). For identical densities,
the linear evolution of the spreading rate versus the ratio
%}-_F_Z% = h‘_: is well reproduced (figure 1) but the sensi-
tivity to the density ratio is underestimated, as emphasized
in figure 2 which only gives the spreading rate versus the
density ratio s for a velocity ratio r = 0, i.e. the highest
spreading rate.

Predictions using the standard & — & model by Launder
and Sharma (1974) are plotted in figure 3. The prediction
is good for isochoric mixing layers (i.e. s = 1) but the ef-
fect of the density ratio is predicted in the opposite way.
Catris and Aupoix (2000) have proposed a rationale to sen-
sitize any transport equation turbulence model to density
gradient. This approach is based upon the scaling of the
logarithmic region of compressible boundary layers. When
this correction is applied, the model yields identical results,
whatever the density ratio, as shown in figure 4. This cor-
rection improves the prediction but strongly underestimates
the density ratio effect upon the mixing layer spreading rate.
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Figure 1: Predictions of the spreading rate with respect to
velocity and density ratios — Mixing length model
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Figure 2: Predictions of the spreading rate with respect to
density ratio for r = 0 — Mixing length model

This trend is general as can been shown in figures 5. Only
the mixing layer model (noted ldm) or a model with one
transport equation for the turbulent kinetic energy (noted
k), the length scale being the mixing length, predict an
increase of the spreading rate with the density ratio, but
strongly underpredict it. Whatever the model constants in
the k — € model (Launder-Sharma or Bézard (2000)), chang-
ing the length scale determining variable and e.g. using a
k — ¢ model (Cousteix et al., 1997) or the Spalart-Allmaras
model (1993), the basic model predicts the wrong sensitivity
to density ratio. The Catris and Aupoix correction the pre-
dictions of which are given in figures 5 correct the trend but
the effect of density ratio is still strongly underpredicted.
Even a change in the constitutive relation, to get rid of the
eddy viscosity hypothesis, yields the same results as shown
by the explicit algebraic Reynolds stress model (EARSM)
predictions. Here, the Wallin and Johansson EARSM model
(2000) has been used, coupled with an optimized k—¢ model.
This result is not surprising as, in the mixing layer, the pro-
duction to dissipation ratio remains close to unity so that the
EARSM model gives levels for the Reynolds stress —u//v"’
close to the eddy viscosity relation.

Model Improvements

As the transport equation for the turbulent kinetic en-
ergy requires little modelling and has already been improved
using Catris and Aupoix approach, the only ways to improve
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Figure 3: Predictions of the spreading rate with respect to
velocity and density ratios — Launder and Sharma k — ¢
model
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Figure 4: Predictions of the spreading rate with respect to
velocity and density ratios — Launder and Sharma k — ¢
model with Catris and Aupoix correction

the model are through either the length scale equation or the
constitutive relation. The use of an EARSM formulation has
already shown that this last point is quite hopeless.

In the exact transport equation for the dissipation rate,
there is a term due to the mean flow divergence —%pediv_q
but accounting for this term does not significantly affect the
predictions, as expected.

A natural way to account for mean density gradient ef-
fects in the length scale equation is to consider that the
dissipation rate can be approximated as ¢ & v{w' - w'), and
to look at the baroclinic effect which appears in the vorticity
equation.

Dw

1 1
= gradu-w—wdivu+ — grad pA grad p+rot (— divz)
De — greduw-wdivut 75 grad pA gradp Sdive

2

The baroclinic term ’%2 grad p A grad p yields two main con-

tributions in the fluctuating vorticity equation: ;12— Mp’ A
gradp + Elfﬁriclp/\ gradp’. The first one is null as the
mean pressure is constant. The second term can be mod-
elled considering that —gradp’ = pgradu - u'. This
leads in the dissipation rate transport equation to a term

- [;15 grad p A (p grad u - g’)] -w') which reduces, for two-

dimensional mean flows, to %(v’w’z g‘%g_;‘ and is modelled
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where C must be positive to give the correct influence. Fig-
ures 6 and 7 show that this correction improves the predic-
tion but that the curvature of the evolution of the spreading
rate with the velocity ratio is the same whatever the density
ratio, which is not consistent with equation (1). Moreover,
different values of C' are required to have a good agreement
when the low speed flow is the lightest or the more dense as

Figure 7: Predictions of the spreading rate with respect to
velocity and density ratios — Bézard k — ¢ model with baro-
clinic correction - C = 0.10

shown in figure 8. Thus, this correction is not satisfactory 025 i — r * Theo.
and should, moreover, degrade compressible boundary layer g 11 » — HB stand
predictions. 0.2 W == HBcomp
i F ===« HB corr C=0,05
COMPRESSIBLE CHARACTER OF THE TURBULENT 015 — HB corr C=0.10
MOTION s ]
© ] r
0.1 :
References ; [
Slessor et al. (2000) pointed out that, if the tempera- ] [
ture of the two streams are strongly different, and hence the 0.05+ -
speeds of sound ¢, the convective Mach number M, is ruled i E
by the hottest flow, which usually is the slowest, while it 0.0 L L
should mainly be ruled by the high speed flow where com- 0.1 1.0 100

pressibility effects are larger. Pointing out that the Mach

number is the ratio of the kinetic to internal energy since
2 — .

= 3—21M2, they introduce another Mach number:

(4)

Vv —1
Il = max [Jz——j' Au
H C;
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Figure 8: Predictions of the spreading rate with respect to
density ratio for r = 0 ~ Bézard k — ¢ model with baroclinic
correction
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Figure 9: Experimental spreading rates coefficients versus
convective Mach number
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Figure 10: Experimental spreading rates coefficients versus
Slessor et al. Mach number
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Figure 11: Influence of the external turbulence level on the
spreading rate (Au = u1 — ug)

A large set of compressible mixing layer experiments
has been analyzed. It includes experiments by Samimy et
al. (1990, 1992), Chinzei et al. (1986), Goebel and Dutton
(1991), Papamoschou and Roshko (1988), Hall et al. (1993),
Clemens and Mungal (1995), Bonnet and Debisschop (1992)
and Barre et al. (1994, labelled Dussauge in the figures). The
values of the coefficient Cy are plotted in figures 9 and 10.
A semi-logarithmic plot is used to compare experiments as a
change in C5 from one experiment to another is just a verti-
cal shift in semi-logarithmic plot. Experiments are compared
to Dimotakis’ (1991) curve, the “Langley curve” (dots in fig-
ure 9) and Slessor et al. (2000) curve, all three plotted for
a value of Cjs of 0.135. A detailed analysis shows that each
experiment gives a spreading rate reduction versus Mach
number in good agreement with Dimotakis’ and Slessor’s
curves, not with the Langley curve. However the reference
level for low speed flow is higher, corresponding to values
of Cs dependent upon the experiment and ranging between
0.18 and 0.31.

This is consistent with computations performed increas-
ing the turbulence level outside of the mixing layer, in which
the spreading rate strongly increases, as shown in figure 11.
Moreover, the analysis of self-similarity equations shows that
the turbulent kinetic energy has to be referred to the veloc-
ity difference as ﬁﬁ- so that, for the above considered
experiments, small levels of turbulence in the supersonic
stream result in high levels of reduced turbulent kinetic en-
ergy and important increases of the spreading rate.

This has a drastic consequence: comparison-of compu-
tations with experiments requires a good knowledge of the
turbulence in both streams outside the mixing layer, which
is usually not the case. Therefore, the validation will only
deal with the ability of models to reproduce the Dimotakis’
and Slessor’s curves.

At last, it can be noticed that the use of Slessor parame-
ter II. does not significantly reduce the scatter, even when
each experiment is considered solely.

Standard models

As models poorly predict mean density effects, computa-
tions have been performed for various velocity and density
ratios and a large range of convective Mach numbers. One
test case for a Mach number II. = 0.01 serves as the “in-
compressible” reference.

There is no information about the speed of sound in
the self-similarity equations. Therefore, whatever the tur-
bulence model used, no reduction of the spreading rate is
observed as the convective Mach number is increased, as
shown in figure 12. Various corrections, to model the di-
latational dissipation and the pressure-dilatation correlation
have been proposed by Sarkar (1991) and Zeman (1990).
Predictions using Sarkar’s model are given in figure 13. Pre-
dictions with Zeman’s model are similar. They are close to
Langley’s curve and underestimate the spreading rate reduc-
tion.

Model improvement

Direct numerical simulations by Freund et al. (2000) and
Pantano and Sarkar (2002) show that the rdle of the di-
latational terms is negligible and that the main effect of
compressibility is via a reduction of the redistributi/_\o/n dueAt/o
pressure fluctuations. The energy transfer from u’ 2 to v/ 2
is reduced, and therefore the production of the shear stress
—u''v" is lowered and hence the turbulence production and
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Figure 12: Prediction of the spreading rate reduction with
a k — ¢ model
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This reduction of communication within a turbulent
structure can be reproduced through the sonic eddy con-
cept introduced by Breidenthal (1992) and adapted to the

Figure 15: Prediction of the spreading rate reduction with
proposed revision of Kim’s model

mixing length model by Kim (1990). No communication 1.2 - — Dimotakis
can exist between two points the velocity difference is super- ] r « Langley
sonic. Thus, a turbulent eddy cannot extend beyond points 1.0 : - . s p,/p, =177
the velocity difference is sonic. In Kim’s model, instead of 1\~ F « pu/py =114
being equal to the mixing layer thickness, the length scale 0.8 1\ : « plp=1
is limited to the distance between points under and above % ] . - v ou/py =4
the considered point such that the velocity difference with o ] p E _
the considered point is sonic (i.e. points where the velocity > 0.6 ] . 3 s Bl
isutec). ° & .

This kind of limitation of the length scale has been tested 04 ] N, . r
for various turbulence models, i.e. mixing length model, one- . { s Coe i
equation model and k — ¢ model. Whatever the model, the 0.2 - a Ty, F
predictions are similar. Kim’s formulation gives predictions ] F
close to the Langley’s curve, as shown in figure 14. This is 0.0
due to an overestimation of the turbulent structure size as o0 05 10 15 20 25 30
the total velocity difference within a turbulent structure can M,

be twice the speed of sound. If the maximum structure size
is really reduced to a velocity difference equal to the speed
of sound, i.e. reducing the length scale to points where the
velocity is u & £ the prediction is in good agreement with
Dimotakis’ curve as shown in figure 15.

Figure 16: Prediction of the spreading rate reduction with
proposed revision of k — £ model

This kind of model requires to identify the mixing layer
and is therefore not usable in general Navier-Stokes codes.
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For this purpose, a more general and non-local modification
of the turbulence model is required. If the dissipation equa-
tion is used, a term of the form

C lo
= 01-2
meax(, l)s (5)

allows to limit the length scale to lgp « I—s—l- For thin shear

layers 1% x MLQ where M, is the gradient Mach number in-
troduced by Sarkar (1995) so that this correction is inactive
in boundary layer flows. The final model form reads:

Cy =0.9;C2 =0.32

2

CE £

c 01—Comese )

g lmax( 21:3/2@1) k
(6)

This model gives fair agreement with Dimotakis’ curve, as
shown in figure 16.

CONCLUSION

Standard turbulence models easily predict isochoric, low-
speed mixing layer. But no model correctly account for
the density gradient through the mixing layer. A correc-
tion based upon boundary layer scaling hardly improves the
prediction. A correction based upon baroclinic effect is pro-
posed but is not satisfactory.

Dimotakis’ or Slessor’s curve are good estimates of the
spreading rate reduction for high speed mixing layers, not
the Langley curve. Slessor et al. approach does not reduce
the scatter. Direct comparison with experiments seems diffi-
cult as the mixing layer behaviour is strongly affected by the
external flow turbulence which is usually unknown. Stan-
dard models predict no reduction, corrections based upon
dilatational terms underpredict the reduction. Kim’s model
has been improved and a new model, based upon the sonic
eddy concept, is proposed and validated.

The author wishes to acknowledge Service des Pro-
grammes Aéronautiques (Ministry of Defense) and ON-
ERA'’s research program SIR which funded this work.
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