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ABSTRACT

Direct numerical simulations of compressible turbulent channel
flow with passive scalar transport are performed at three Reynolds
numbers Re ranging from 221 to 545 and Mach numbers ranging
from 1.5 to 3.0. The Prandt! and Schmidt numbers are 0.7 and 1.0,
respectively. A mean scalar gradient is imposed across the mean flow.
Budgets of the scalar variance and the scalar flux components are
presented for these flow parameters and Mach number effects are dis-
cussed. Outer scalings are found suitable to collapse incompressible
and compressible data.

INTRODUCTION

Incompressible fully developed turbulent channel flow with pas-
sive scalar transport has been directly simulated for the first time by
Kim et al. (1989) at a Reynolds number Re-, based on the friction ve-
locity, uq, and the channel half width, & of 180. Two types of boundary
conditions were used, in the first case the scalar was internally gen-
erated with isothermat walls of the same temperature, in the second
case a different scalar magnitude on each of the isothermal walls was
imposed. The Prandtl numbers were varied between 0.1 and 2. Re-
cently Johansson er al. (1999) performed a similar DNS, imposing
a mean scalar gradient, at a Reynolds number of Rer = 265. Not
much is known so far about the influence of compressibility on the
transport of a passive scalar although its thorough understanding is
prerequisite to the understanding of active scalar transport and com-
bustion processes. Investigations of compressibility effects in super-
sonic channel flow have been presented first by Coleman et al. (1995),
by Huang et al. (1995) and later by Lechner ef af. (2001). They all
used isothermal walls, a domain size of (LeLy.Ly) = (41:,47:/3,2)}1
in streamwise, spanwise and wall normal direction and Mach num-
bers between 1.5 (Coleman, 1995, Huang, 1995, Lechner, 2001) and 3
(Coleman, 1995, Huang, 1995). Coleman et a/. (1995) and Huang et
al. (1995) demonstrated that a van Driest transformation of the mean
velocity and a semi-local near-wall scaling for r.m.s. velocity and
vorticity fluctuations collapse compressible and incompressible data
onto practically the same curves. Foysi, Sarkar and Friedrich (these
Proceedings) give further details concerning compressibility effects
on Reynolds stresses and the pressure-rate-of-strain tensor. This pa-
per addresses the response of the turbulent scalar fluxes and scalar
variance to Mach and Reynolds number variations in fully developed
compressible channel flow. Budgets of the scalar variance and stream-
wise as well as wall-normal scalar fluxes are shown and discussed.

NUMERICAL METHOD AND COMPUTATIONAL DETAILS

The compressible Navier-Stokes equations are solved in a
pressure-, velocity-, entropy-form (Sesterhenn, 2001). These equa-
tions are supplemented by a transport equation for the passive scalar.

In Cartesian coordinates the whole set of equations reads:
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where p,u;,s,p,& represent pressure, Cartesian velocity components,
entropy, density and concentration, respectively. The components of
the heat flux vector g, viscous stress tensor T and the dissipation rate
@ read:
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The thermal equation of state
r= pRT, R= Cp -G, 7N

and the following laws for dynamic viscosity g, heat conductivity A
and diffusivity D close the set of equations:
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The Prandtl number Pr, the Schmidt number Sc¢ and the ratio of
specific heats -y are kept at constant values in the temperature and con-
centration ranges considered, namely Pr=0.7, Sc=1.0,y=C,/C, =
1.4. The body force term f1§;) in the momentum equation replaces
the mean pressure gradient in streamwise direction and is uniform in
3D space. Thus, fully developed turbulent flow can be handled using
periodic boundary conditions in stream- and spanwise directions. A
mean scalar gradient is imposed on the flow, using an initial profile of
the form (Johansson, 1999)

E(x1,%2,33,0) = log { ot }/logm { 2] } 20=1.007 (9)
70— X3 w—1

and the bondary conditions &(xy,x2,0,¢) = 1,  &(x;,x2,2,¢) = —1.

This corresponds to an injection of the scalar from one wall and a

removal from the other.

Following Sesterhenn (2001) equations (4) are cast in a charac-
teristic non-conservative form, compare Foysi ef al. (2003) in these
Proceedings, which allows to formulate wall boundary conditions
consistently with the field equations.

A compact Sth-order upwind scheme of Adams and Shariff
(1996) is used to discretize the hyperbolic (Euler) terms in the basic
equations. The molecular transport terms are discretized with a com-
pact 6th order scheme of Lele (1992). The solution is advanced in
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Table 1: Flow and computational parameters

Case M Re Re, Ly/h Ly,/h Ly/h

A 1.5 3000 221 4n 4r/3 2
B 25 5000 455 2n 2n/3 2
C 3.0 6000 545 2n 2n/3 2

Table 2: Flow and computational parameters (cont.)

Case Na No Na  Axf  Axf Axf_
A 192 128 151 1446 723 5.02
B 256 128 201 11.16 744 7.46
C 256 128 201 13.37 891 9.38

time with a third-order ‘low-storage’ Runge-Kutta scheme, proposed
by Williamson (1980). Three direct simulations have been performed
for different flow parameters. The global Mach and Reynolds num-
bers for fully developed channel flow read

M= “m’/cw-, Re = Pmllmrh//»lw- (10)

The bulk-averaged density p,, is defined as p,, = f‘? pdxa/h, u,y is
the Reynolds (rather than Favre) cross-sectionally averaged velocity.
The speed of sound and viscosity are computed for constant wall tem-
perature 7,,, while £ is the channel half width. The friction Reynolds
number Rec = pyuch/phy, with ur = /T /P, is a result of the sim-
ulation. Tables | and 2 summarize the flow parameters, box sizes
and numbers of grid points used in the three cases A-C. Equidistant
grids are used in (xy,x7)-directions. In the wall-normal x3-direction,
points are clustered following tanh-functions (Lechncr 2001). The
first gridpoint is below xq = 1.5 and the tenth at xz < 17.62 (case C).

MEAN FLOW VARIABLES AND TURBULENT TRANSPORT

For fully developed channel flow the integrated mean momentum
and scalar transport equations read in wall (+) units:
B diaf _puuy B (D
o dxy Ty h’
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In (11,12), a Reynolds averaged velocity and concentration, iy, Ehave
been used to express the mean viscous stress and the mean diffusion
flux, while correlations involving viscosity and diffusivity fluctua-
tions have been neglected. On the other hand, it is convenient to use

Favre fluctuations in defining Reynolds stresses, pu u” and turbulent

scalar fluxes, pé" 7. Wall units with respect to the momentum trans-
port are the fncnon velocity ur = \/T,/pw, as well as density and
viscosity at the wall, p,,, u,.. With respect to the scalar transport these
are iy, Py, e and the friction scalar &, resulting from the scalar wall
flux %,

Xnw = S = “Pu-llz§1~ (13)

From (12) we conclude that the sum of molecular and turbulent scalar
fluxes is constant across the channel, much like the total shear stress
‘is a constant in turbulent Couette flow. The molecular scalar flux is
non-zero in the channel core, due to an S-shaped profile of the mean
scalar with non-zero gradient at the centreline. Figure | shows pro-
files of the Favre-averaged scalar, & normalized by wall values, for
cases A-C and incompressible flow at Re; = 265, S¢ = 0.7, according
to Johansson et af. (2001). In order to see the effect of Mach num-
ber on the molecular scalar flux, we plot its exact value p/Scdf/dx3

normalized with |y,.| in Figure 2. In the core region all three cases
practically collapse onto one curve. Effects of Mach number appear
where mean density and viscosity have their strongest variations.

Outer scaling: From (12) and the fact that the molecular scalar
flux is small (Figure 2) compared to its turbulent counterpart, we as-
sume that |y, is a reasonable outer scale of the turbulent scalar flux
in wall-normal direction. Figures 3 and 4 demonstrate that this is true
in the range of x3 / h > 0.6 for the streamwise scalar flux as well, ir-
respective of the Mach and Reynolds number. Incompressible data of
Johansson ef al. (2001) for Sc¢ = 0.71 are included in the Figures for
comparison.

Inner scaling: From (11,12), neglecting turbulent fluxes near the
wall, we get for the viscous sublayer:

LY ST

, =, (14)
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and after integration
Er—Er =Scaf (15)

Equation (14) suggests the following transformed velocity and scalar
in the viscous sublayer:
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Figure 5 contains profiles of the viscosity transformed scalar F;l,, ac-
cording to equation (16), together with x;. The graph shows that the
different cases deviate only beyond the buffer layer.

BUDGETS OF THE SCALAR VARIANCE AND SCALAR
FLUXES

For steady and fully developed compressible channel flow the

transport equation for the scalar variance, pg” : /2, reads:
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The terms on the r.h.s. represent production by mean scalar gradients,
turbulent transport and viscous diffusion and dissipation. A produc-
tion term due to mean dilatation does not exist in this flow. At the
wall viscous diffusion and dissipation balance.

The transport equations for the turbulent streamwise and wall-

normal scalar fluxes, pu|§ and pui§ are, respectively:

oE 7 0| ap
o 95 Ty _ Y g n YL
P ”‘a pLu ?Bx pu i ox)

d n H ‘i 7 — .E_iia”‘

S ( oo PO ) T T oy (P
& 9 —m
_ //2 WT2En "

0= —pu; o1 8 § axq

a 1 "J E " ﬁ_iiau
+$ < 3 Sc oxy +8 T dx;  Scox; ox; (9

Both transport equations contain production terms due to mean scalar
gradients, the streamwise scalar flux is in addition produced by mean
velocity gradients. The other terms denote the turbulent transport of
the scalar fluxes, a scalar-pressure-gradient correlation, the analogue
of the velocity-pressure-gradient term in the Reynolds stress transport
equation and, finally, the transport of both scalar fluxes by two molec-
ular diffusion terms and two destruction terms (viscous and diffusive
destruction).
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Scalar variance: For convenience, we first show profiles of the
r.m.s. scalar fluctuations, normalized by ém. = f(,l de;//z in Figure 6.
They reveal a peak in the wall layer and a maximum at the channel
centreline which is due to non-zero gradients of the mean scalar there,
resulting in higher peaks for the lower Mach and Reynolds number
cases A,B. which have steeper gradients. Incompressible data of Jo-
hansson er «l. (2001) are plotted for comparison. They match the
present M = 3 data. The increase in wall peaks, compared to in-
compressible flow, is in line with the corresponding increase in the
streamwise Reynolds stress as Ma increases (see Figure 7) and the in-
crease in the streamwise scalar flux, pu{/E” in Figure 4. These effects
underline the strong similarity of the « and &" fields at high Mach
numbers. For annular mixing layers this effect has been explained by
Freund er al. (1997) based on the transport equations for pu; and p&
and the suppressed role of the pressure. In the wall layer of the chan-
nel the behaviour of the pressure is similar, but may be due to other
reasons which are currently explored.

Figure 8 shows profiles of four terms in the scalar variance budget
normalized by &..|x..|/h for case C alone. In the channel core, pro-
duction and dissipation of scalar fluctuations balance and are non-zero
due to a finite scalar gradient. In the buffer layer where most of the
turbulent kinetic energy is produced, all terms contribute to the bud-
get. At the wall itself, dissipation and molecular diffusion balance.
In order to show effects of Mach number, we have plotted production
and dissipation profiles separately, for cases A-C and the incompress-
ible data of Johansson er «1.(2001). In the core region, incompressible
and compressible producion rates collapse (Figure 9), indicating that
Eavl 2w |/ 11 1s the proper outer scale. In the wall layer we notice an in-
crease as the Reynolds number increases. The peak prodution rate can
be computed using the extremum condition, expressed in wall units:

oTE AR ‘
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We make the approximation ?:; o~ E and substitute the scalar flux from
equation (12) into (20) to get:
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From this relation we conclude that the molecular scalar flux is in-
creased due to viscous heating in compressible flow compared to
incompressible flow (#/p = 1). Since the term in the brackets is
greater than one, we get
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while in incompressible flow
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For the peak production rate of the scalar variance we therefore get
(using (12), (22))
P’ g 1
o < £ Se (24)
K dx3 4
In incompressible flow the non-dimensional production rate has a
peak value of Sc/4. Hence, the scalar variance production rate in the
compressible wall layer is reduced in a way similar to the reduction
of turbulent kinetic energy production. Note that the data of Johans-
son et al. (2001) are obtained for a Schmidt number of 0.7 which (for
the same Reynolds number) reduces the peak production rate. This is
brought out in Figure 10 where all production terms are normalized
by %2 [t Profiles of the scalar variance dissipation rate are plotted

in Figure 11 using the same normalization. It is seen that the Mach
number effect reduces the scalar dissipation rate everywhere in the
channel. A similar effect has been observed for the turbulent kinetic
energy dissipation rate. Comparison with Johansson et al.’s (2001)
data reveals a Schmidt number effect as well.

Budget of streamwise flux: The budget for Case C is presented in
Figure 12, normalized by || T /t6e. [t has the interesting feature that
all terms vanish at the channel centreline. In the core region, produc-
tion and the scalar-pressure-gradient correlation dominate, while the
destruction rate is comparably small. Only at the wall exists a balance
between destruction and molecular diffusion terms. It turns out that
Uay| X/ is the proper outer scale for the pu{&" -production, see Fig-
ure 13 (this can be seen, too, by integrating the streamwise scalar-flux
balance from the wall to the channel core and estimating the remain-
ing non-zero terms), while wall scaling (T ||/ ) reveals the Mach
number effect in terms of a reduction of the peak production rate with
increasing Mach number. The scalar-pressure-gradient correlation,
E"dp/axi, in Figure 14 scales as u,y|X.|/# in the channel core for
compressible and incompressible flow.

Budget of wall-normal flux: Unlike the case of streamwise flux,
none of the terms vanishes on the centreline. In Figure 15, represent-
ing case C, we note the dominance of production and scalar-pressure-
gradient correlation, &”dp/dxy. At the wall destruction and diffusion
balance, but have so small values that they cannot be distinguished
on the plot. Again, u,|¥.|/h turns out to be the proper outer scale
for the scalar flux production and the scalar-pressure gradient correla-
tion. Figures 16 and 17 show the Mach number effect for these terms,
namely reduced production and reduced scalar-pressure-gradient cor-
relation as the Mach number increases. The Reynolds number effect
is less pronounced.

CONCLUSIONS

Passive scalar transport in compressible turbulent channel flow
reveals features similar to turbulent momentum transport, namety

e an increase of the scalar flux peak values with increasing
Reynolds number

e a decrease of the wall-normal scalar flux and an increase of the
streamwise scalar flux magnitude due to compressibility.

These effects are in line with the behaviour of the corresponding
Reynolds stresses. Similar to the production of the Reynolds stresses
and the TKE are the production rates of the scalar variance and the
scalar fluxes reduced when the flow becomes compressible. The peak

production of p&"* /2 is < Sc/4 when normalized by wall units. The
scalar-pressure-gradient correlations scale as ugy{).|/# in the chan-
nel core and show reduced amplitudes in the compressible wall layer,
most probably due to the suppressed role of the pressure fluctuations
there.
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Figure |: Profiles of E normalized by &,.. Compressible cases: ——,
Rer = 545, Mu=3; — — =, Req = 435, Ma = 2.5;- - - - , Re¢ = 221,

Ma = 1.5. O shows data of Johansson et al., Re; = 265; Sc=0.7
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Figure 3: Profiles of the wall normal scalar flux puij&" normalized by
I%w]- The compressible cases are: —— Rer =545, Ma=3,-—-—,

Rey = 455,-Ma =2.5;----, Rer = 221, Ma = 1.5. O shows data of
Johansson et al., Req = 265;Sc=10.7
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Figure 4: Profiles of the streamwise scalar flux —W normalized by
lx]. The compressible cases are: L Req =545, Ma =3, ~-—,
Rer = 455, Ma = 2.5;- - - -, Rer = 221, Ma = 1.5. O shows data of
Johansson et al., Req =265, Sc=0.7
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Figure 6: Profiles of the r.m.s. scalar ﬁuctuationS\/é';”2 normalized by
€. Compressible cases: —— , Req = 545, Ma = 3, — —— , Re; = 455,
Ma=2.5;----, Reg =221, Ma = 1.5. [J shows data of Johansson ez
al., Rer = 265;Sc=0.7
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Figure 7: W normalized by 1,.. Compressible cases: , Re; =
545, Mau=3;—~~ Rey =455, Mu=2.5;--~- Re; =221, Ma=1.5.

Incompressible cases (Moser, 1999): @ Req = 180; O Re; = 395; +
Rer = 590.
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Figure 9: Production term of the pé”z /2-balance, normalized by
Eoeliw]/h. —— , Res = 545, Ma = 3;——— , Re; = 455, Ma = 2.5;- - -

<, Rer =221, Ma = 1.5. [0 shows data of Johansson et al., Rer = 265;
Sc=0.7
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Figure 10: Production term of the p&”?/2-balance normalized by
Y2 the. —— , Rex = 545, Ma=3; = =~ , Rec = 455, Ma = 2.5; -
--,Re; =221, Ma=1.5. O shows data of Johansson et al., Rer =265;
Sc=07
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Figure 11: Dissipation of the pE,,”z/Z»ba]ance normalized by %2/t —
— Re; =545, Ma =3, =~ ,Re; =455 Ma = 2.5, == - , Re; =221,
Ma = 1.5. [0 shows data of Johansson et al., Rer = 265; Sc =0.7
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Figure 13: Production of the pu}£"-balance, normalized by uqy|Xu|//r.
—— Re¢ =545, Ma =3, =~  Re; =455, Ma =2.5;- -« =, Rex =
221, Ma = 1.5. O shows data of Johansson ¢t al., Rer = 265; Sc = 0.7
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Figure 14: Scalar-pressure-gradient correlation term of the pu}/&'-
balance, normalized by el /1. ,Rey =545 Mau=3;, -~ -
s Rer =455, Mu =2.5;- - - - | Ree = 221, Ma = 1.5. O shows data of
Johansson er al., ReT =265;Sc=0.7
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Figure 16: Production of the pu" "_balance, normalized by u|Xw|/h-
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Figure 17: Scalar-pressure-gradient correlation of the puf ﬁ” balance,
normalized by u. X!/ h. L Re: =545, Ma=3; - ——, Rer =455,
Ma=2.5----,Re; =221, Ma = 1.5. O shows data of Johansson et
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