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ABSTRACT

Vortex structures in compressible isotropic turbulence
are compared to those in incompressible isotropic turbulence
in order to elucidate compressibility effects on vortices. It
is shown that vortex cross-sections, vortex circulations, and
some other quantities which characterize strength of swirling
motions of vortices are suppressed by compressibility. The
suppressions are attributed to effects of the density varia-
tions in the initial stage of vortex formation and succeeding
reduction of the vortex stretching. It is also shown that
waves excited on vortices are considerably changed by exis-
tence of compressibility.

of our DNS are described. In §3, results of vortex analysis
are shown. Concluding remarks are shown in §4.

DIRECT NUMERICAL SIMULATION

We simulate motions of fluids by solving systems of gov-
erning equations of compressible and incompressible fluids in
(27)2 triply-periodic box by the pseudo-spectral and Runge-
Kutta-Gill scheme. Motions of compressible fluids are de-
scribed by the equations of density p, momentum pu,; and
total energy Er as follows.
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of nature of compressible turbulence. Sarkar(1995) has
shown that changes of the incompressible components of
the Reynolds shear anisotropy is more important than some
compressible-fluid-intrinsic terms in the energy budget equa-
tion, such as the pressure-dilatation and dilatational dissi-
pation, to explain the reduction of the growth rate of the
kinetic energy in homogeneous shear turbulence. Vreman et.
al(1996) have shown that suppression of pressure fluctuation
is crucial to elucidate compressibility effects on evolutions
f planar mixing layers. Though these two and succeeding
works present clear explanations on compressibility effects
on turbulence, detailed physical process which bring about
these phenomena are not given in them, unfortunately.

The purpose of our research is to clarify how compress-
ibility changes small-scale structures of turbulence. For this

Here u;, S;;, p and T are the i-th component of the velocity
vector u, (Z,5) component of the rate of the strain tensor
S, pressure and temperature, respectively. We assume that
the compressible fluid obeys the equation of an ideal gas
p= pT/'yMg, where the ratio of the specific heats is y = 1.4.
The equations (1)-(5) are already normalized so that the
equations coincide with the incompressible Navier-Stokes
equation (described below) in the incompressible limit. Re-
fer to Kida and Orszag(1990) or Miura and Kida(1994) for
details of normalization of equations and numerical scheme.
Motions of an incompressible fluid with a constant den-
sity is described by the equation of continuity and the in-
compressible Navier-Stokes equation as follows.

purpose, we restrict ourselves to isotropic turbulence which % — (6)
is highly idealized and easier to analyze than homogeneous Oz;

shear turbulence or planar mixing layers. A special attention Oug s Jui 8p 1 %y

is paid to vortex structures because they are good represen- ot 7 0x; Ox;  Rep Ox;0x;

tatives of incompressible motions of fluids. Modification of : (i=1,2,3) (7)

the vortex structures by compressibility should have signifi-
cant effects on structures of turbulence. We conduct direct
numerical simulations (DNS) of decaying isotropic turbu-
lence of compressible and incompressible fluids and compare
vortex structures in the two kinds of fluids. In §2, outlines

In the system of equations, we have only one control param-
eters: Reynolds number Reg.

Outlines of our DNS are as follows. Control parameters,
number of grid points N3 and ka7, an index of numerical
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Table 1: Control parameters of DNS. Symbols kmaez and 5
represents the maximum wavenumber available in the DNS
and the Kolmogorov length scale, respectively.

N3 Reg Mg Pro Y k'maz:n
Cl 5123 1000 2.0 0.70 1.4 2.0
Cc2 5122 1000 0.5 070 1.4 2.0

Cc3 5122 1000 0.1 0.70 1.4 2.0
C4 10248 2000 20 070 14 2.0
1 256% 1000 - - - 2.0
12 512% 2000 © - - - 2.0
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Figure 1: Time evolutions of the enstrophy density. Thick
(thin) lines represent graphs of Reg = 2000 (1000) runs.

resolution, are shown in Table 1. In the column of kmaz7,
minimum values of each runs are shown. The Taylor’s length
scale Reynolds number of Reg = 2000 (1000) runs decay
from 280(140) to 40(40). Since we set the initial density
fluctuation and dilatation be null in the compressible runs,
compressibility of these runs remain relatively weak. The
turbulent Mach number is typically 0.4 for Mg = 2 runs
and we do not observe shocklet.

In our DNS, differences of the kinetic energies among
compressible and incompressible runs are not very large. In
Fig.1, time evolutions of the enstrophy are shown. The re-
duction of the enstrophy from run I2 to C4 (I1 to Cl1) is
about 11% (2.5%). The reductions look relatively small, es-
pecially for low-Reg runs. However, the root-mean-square
(rms) fluctuation of the enstrophy density from run I2 to
C4 (I1 to C1) is 20% (15%) (the figure is not shown), which
is larger than the reduction of the enstrophy. Especially,
the reduction in low Reg runs are quite clear. Note that
the pressure fluctuations are also reduced by compressibil-
ity. Since fluctuations of the enstrophy and pressure are
strongly related with vortex structures, it suggests that the
vortex structures should be sensitively changed by compress-
ibility effect.

VORTEX ANALYSIS

Compressibility effects on vortices

In most cases below, we show only data of Reg = 1000
‘because we do not have runs with intermediate Mp for
Rep = 2000 simulations. However, as have been shown
above, runs with the lower Reg show clear compressibility
effects on vortices.

We identify tubular vortices by the use of the scheme
developed by Miura and Kida(1997), and Kida and Miura
(1998a). We extract central axes of vortices and regions

where streamlines relative to each vortex axis are ellipti-
cal (vortex cores). We make use of two advantages of our
scheme. One advantage is that we do not need any arbi-
trary parameter such as the thresholds of isosurfaces of the
enstrophy density or V2p, which are often used to visualize
vortices. Therefore, we are able to identify vortices in an
objective manner, whether the swirling motions of vortices
are strong or weak. Another advantage is that we identify
individual vortices separately. It enables us to compare de-
tailed properties of compressible and incompressible vortices
which shares their ancestor in the initial condition.

Figure 2: Vortex axes and a few typical vortex cores in run
Cl1.

In Fig.2, vortex axes and a few typical vortex cores of
run C1 are shown. A region of 1283 grid points is shown.
In the course of the time evolution, length of vortex axes
grows almost monotonically in time. The volume occupied
by vortex cores decays till t = 2.5 and begins to increase
after that (Miura, 2002).

In Fig.3, the probability density functions (pdfs) of vor-
tex core radii in runs C1-C3 and Il at ¢ = 3.5 are shown.
Though it is difficult to distinguish plots of the pdfs of com-
pressible runs (especially between C2 and C3), differences
between pdfs of compressible runs and the pdf of run I1 are
clear. Apparently, compressible runs have smaller core radii
than the incompressible run. The the central value of the
pdf of run I1 is about 57, being consistent with earlier results
(Jiménez et al. 1993, Kida and Miura 1998a). The central
values of runs C1, C2 and C3 are about 47. Compressibility
reduces the extent of vortices about 20%.

Since the extent of vortices are closely related with
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Figure 3: Pdfs of vortex core radii of runs C1-C3 and I1 at
t = 3.5.
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strength of swirling motions of vortices, we investigate how it
is affected by compressibility. We characterize the strength
of swirling motions by the longitudinal vorticity w). Time

evolutions of <wl2l is shown in Fig.4(a), where (-), rep-
resents the average along all of the vortex axes. The quan-

tity <wﬁ> is reduced about 30% from run I1 to C1. In
A

Fig.4(b), time evolutions of the vortex circulation <w%>A =

<(I‘/S)2>A are shown where I' = fcu -dl and S are the
circulation and cross-section of a vortex, respectively. The
outer most boundaries of vortex cores are adopted as closed
paths to calculate the line integral fo -dl. Figs.4(b) also
shows that strength of swirling motions are reduced by com-
pressibility.

80 T T T T

Figure 4: Time evolutions of the averages of (a)<wﬁ> and
A

u»(w§>A.

As has been described in the Introduction, we consider
that changes of vortex structures should be considerably re-
sponsible to the suppressions of the kinetic growth and/or
that of the pressure fluctuation. Vortices contribute to gen-
erate pressure fluctuation through decrease of pressure on
the plane of their swirling motions. The pressure fluctua-
tion caused by the swirling motions are well represented by
the incompressible component of the pressure p!, which is
given by

32
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The superscript | represents the incompressible component
of the quantity. Recall that the right-hand-side of eq.(8) is
nothing but an operation to the incompressible components
of the Reynolds shear stress which Sarkar{1995) has argued.

Changes of Reynolds shear stress and pressure fluctuation
are coupled by the vortex structures as shown in eq.(8).

In Fig.5, the averaged values of (a)w| and (b)p! are
shown as a function of the vortex radius R/n. It is clear
that these fluctuations become smaller as compressibility be-
comes stronger. It supports our view that contributions of
vortices to generations of pressure fluctuation are suppressed
by compressibility.
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Figure 5: Averaged (a)longitudinal vorticity w; and
(b)incompressible part of the pressure p’.

An mechanism of vortex suppression

An mechanism to suppress growth of vortex structures
are investigated here. For this purpose, effects of density
variations must be taken into account. Viscous effects is
neglected for simplicity. The budget of the enstrophy density
of an incompressible fluid is described by

0 1
—+4+u-V)-jw|*=w-S w 9
(5 +u-9) 3ol ©)
where w = V X u is the vorticity. The compressible counter-
part of eq.(9) is written in terms of the potential vorticity

w/p as

a3 1w

— B vA I e
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Since the baroclinic torques in our compressible runs are
negligibly small, egs.(9) and (10) coincide each other by
replacing w in eq.(9) by w/p in eq.(10). It means that vor-
tices of a compressible fluid are less stretched than those of

an incompressible fluid even if the same strength of vortex
stretching is imposed to them, because the stretching works

: w 5. Y VpxVp w

P P o3 (19
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as much to change (decrease in this case) the density as to
stretch vortices in a compressible fluid.
In Fig.6, time evolutions of squared potential vorticity

Qp = <(w||/p)2> /2 are shown. (Recall that p = 1 for
A

an incompressible fluid.) The graphs collapse very well at
the initial stage t < 2. We assert from this observation
that some part of the vortex stretching are used to reduce
density (namely, to make 1/p large) around vortex axes, not
to stretch vortices.
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Figure 6: Time evolutions of the potential vorticity averaged

on the vortex axes, <(w“/p)2> /2.
A

Figure 7: Time evolutions of the mean squared vortex
. 2
stretching <(8u”/az|l) > /2
A

Though the suppression of longitudinal vorticity at the
initial stage t < 2 is attributed to the density reduction,
plots of Q, do not collapse for ¢ > 2. In the next stage
t > 2, the suppression of swirling motions are not explained
only by the density reduction effects and we have to find
another mechanism to explain the vorticity reduction.

The growth of the longitudinal vorticity wy is governed
by the vortex stretching o = OJu/dz). In Fig.7 time

evolutions of <02>A are shown. The mean squared vor-

tex stretching <a2>A decreases as compressibility becomes
stronger. Though the amount of the reduction is not very
large, the reduction of the vortex stretching works consecu-
tively to suppress growth of wy.

One important candidate of the vortex stretching sup-
pression is proposed here. Vortex structures are stretched
and enhanced by the vortex stretching. Swirling motions

of the enhanced vortices strengthen background shears and
contribute to stretch other vortices. When the background
shears are consumed to decrease density inside the vortices,
vortices are not stretched very much. Then background
shears are less strengthened and consequently, it fails to
stretch vortices again. The process forms a sort of a cyclic
mechanism and works to prohibit vortex structures growth.

In order for the cyclic mechanism to work effectively,
vortices must be located sufficiently close to each other. In
Fig.8(a), a vortex core and three vortex axes sticking into
the core in run C1 are shown. In Fig.8(b), a vortex core of
run 11 which shares the same ancestor in the initial condi-
tion with the core in Fig.8(a), is shown for later use. As
is seen in Fig.8(a), the axes are located next to each other
closely and it often happens that one vortex axis goes into
other vortex cores. {Readers may also refer to Fig.6 of Kida
and Miura(1998b), in which a vortex axis gouges the core of
another axis.)

(a) C1

Figure 8: Typical close-views of (a)compressible and
(b)incompressible vortex cores, which shares their ancestor
in the initial condition.

By counting the length of vortex axes covered by other
vortex cores, it is estimated that about from 5 to 20% (de-
pending on the stage of the time evolution) of the total
length of vortex axes are affected directly by the swirling
motions of other vortices. Therefore, the cyclic reduction
mechanism of the vortex stretching is considered to have
significant importance on the vortex stretching reduction ob-
served in Figs.7.

WAVES ON VORTICES

In this section, we observe detailed structures of individ-
ual vortex structures. In Figs.8, compressible and incom-
pressible vortices are shown. We find that the vortex core in
Fig.8(a) is thinner and wavy than the one in Fig.8(b). Such
a kind of differences is widely observed among compressible
and incompressible vortices which shares their ancestors.

In Fig.9(a), plots of the vortex stretching ¢ on vortex
axes are shown. The four graphs in Fig.9(a) represent ¢ on
vortex axes which share the same ancestor at the initial time.
The abscissa represents the distance of the point from one
end of the axes to the other end measured along the axes.
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In Fig.9(b), a part of Fig.9(a) is magnified. We find that
o of compressible runs oscillate rapidly while that of run 11
varies very slowly. As compressibility becomes stronger, the
mean level of o on these axes becomes lower, being consistent
with the observation in Figs.7. In other words, amplitudes
of the rapid oscillations becomes smaller as compressibility
becomes weaker and those of the slow, large-scale oscillations
becomes larger.

Properties of the oscillations are quantitatively investi-
gated by pdfs of the periods of the oscillations. The os-
cillation period A is defined as the distance of two peaks.
Since these oscillations are observed as much on longitudinal
vorticity as on vortex stretching, only plots of longitudinal
vorticity are shown here. In Figs.10(a} and (b), linear and
log-log plots of the pdfs are shown, respectively. On one
hand, the pdf of the incompressible run 11 has a broad peak,
the tail of which decays proportionally to (A/n)~3/5. The
existence of the power-law represents that there is no char-
acteristic scale for A in I1. On the other hand, the pdfs of
compressible runs have sharp peak around A/n ~ 12, being
essentially different from the pdf of run I1. Furthermore, the
pdf of compressible runs do not look converging to I1 when
compressibility becomes weaker. It suggests that the periods
of the oscillations with A/n ~ 12 are intrinsic to compress-
ible fluids and it does not coincide with the properties of an
. incompressible fluid in the limit of zero Mach number.
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Figure 9: Oscillations observed on vortex axes.(a)Vortex
stretching ¢ measured on the vortex axes which shares their
ancestor in the initial condition. (b)A close-up view of (a).

CONCLUDING REMARKS

In this article, we have shown that strength of swirling
motions of vortices are sensitive to compressible effects even
though compressibility is not very strong. Density vari-
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Figure 10: Pdfs of the periods of the oscillations in (a)linear
and (b)log-log plots.

ations cause initial reduction of vortex enhancement and
results to the reduction of vortex stretching by a sort of a
cyclic mechanism. The existence of compressibility changes
various properties of vortices. Especially, natures of waves
observed on vortices are significantly changed by compress-
ibility. Waves on incompressible vortices have been studied
by Verzicco et al.(1995). In our DNS, large-scale oscillations
which seem to have incompressible nature becomes weaker
as compressibility becomes stronger, and small-scale oscilla-
tions become stronger in place of them.

A detailed observations reveals that these oscillations are
coupled with acoustic waves. (Figures for detailed time evo-
lutions are omitted in this article.) Note that the waves
on the vortex stretching consist both of compressible com-
ponents (acoustic waves) and incompressible components.
Our conjecture is that Kelvin waves (or inertial waves) are
excited by the acoustic waves. Similar observations on
acoustic/Kelvin waves have been reported by Kivotides et
al.(2001) for superfluid turbulence. Our observations may
be its counterpart only in normal fluid.

Finally, the observations on vorticity waves suggest that
there are some properties which do not converge to an in-
compressible system in the zero-Mach number limit. It is
worth conducting further investigation on compressible vor-
tices to understand these nature of compressible turbulence.
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