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ABSTRACTS

Turbulent compressibility effects are discussed
with the aid of the turbulence theory based on the
mass-weighted averaging. They are classified into
two groups: one is the effect through the
compressible part of velocity fluctuation, and the
other is the direct effect of density fluctuation. In this
work, attention is focused on the former, and the
Reynolds stress is modeled on the basis of a
nonequilibrium turbulent-viscosity representation
dependent on the Lagrange derivative of turbulence
quantities. Supersonic effects occur, besides the
mean-density variation, in the combination of
nonequilibrium and turbulent Mach-number effects.
This model may reproduce the reduction in the growth
rate of a free-shear layer flow, without causing wrong
supersonic effects on wall-bounded flows such as
channel and boundary layer flows.

INTRODUCTION

Turbulence modeling of supersonic flows is a
challenging subject from practical and academic
viewpoints. A typical supersonic effect is the drastic
reduction in the growth rate of a plane free-shear
layer flow. The behavior of reduction is often
characterized by the Langley curve (Kline et al.
1981). For capturing the reduction mechanism by

turbulence modeling, attention was first paid to the
dilatational dissipation rate and the pressure-dilation
correlation in the turbulent-energy equation (Zeman
1990; Sarkar 1992; Liou et al. 1995). There the
explicit supersonic effects are represented by the
turbulent Mach number. Supersonic effects on the
turbulent-energy equation were also sought in light
of the density variance (Taulbee and VanOsdol 1991).

The mechanism of turbulence suppression due to
supersonic effects has been examined by the direct
numerical simulation (DNS) of homogeneous-shear
and free-shear layer flows (Sarkar 1995; Vreman ef al.
1996; Freund er al. 1996). There the dilatational
energy dissipation rate and the pressure-dilatation
correlation play a minor role in the turbulent energy
equation, and the close relationship exists between
supersonic effects and the suppression of pressure
fluctuation. Such suppression leads to the decrease in
the pressure-strain correlation, resulting in the
reduction in the energy supply to the turbulent
normal velocity component. As a result, the
Reynolds-stress shear component is reduced, which
gives rise to the decrease in the energy production.
This process is a cause of the growth-rate
suppression in a free-shear layer flow.

The above DNS finding indicates that the second-
order modeling explicitly dealing with the pressure-
strain correlation is appropriate in analyzing
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supersonic flows by turbulence modeling. In this
line, second-order compressible models were
proposed by Adumitoaie et al. (1999) and Fujiwara et
al. (2000) with special attention to the application
to a free-shear layer flow. The computational burden
of the second-order model, however, is heavy in
analyzing complex engineering turbulent flows. In
order to alleviate the burden, the model by
Adumitoaie et al. was reduced to an explicit algebraic
Reynolds-stress model. Such algebraic modeling may
be regarded as a mathematical compromise between
the proper treatment of anisotropy of turbulent
intensities and the manageability of models.

Supersonic effects occur quite differently in wall-
bounded flows such as channel and boundary layer
flows. In the DNS of a supersonic isothermal-wall
channel flow, the density variance is large,
specifically, near the wall, but the pressure variance
is very small over the whole region (Coleman et al.
1995). The mean velocity can be expressed by the
logarithmic velocity law with the mean-density
variation taken into account through the Van Driest
transformation.

The foregoing discussions on free-shear layer and
wall-bounded flows imply that any new compressible
turbulence model needs to fulfill the following.

(a) In wall-bounded flows such as channel and
boundary-layer flows, supersonic effects on the mean
flow appear through the change of mean density;
namely, newly added turbulent supersonic effects
vanish or become weak in the calculation of such
flows.

(b) The model may reproduce the reduction in the
growth rate of a free-shear layer flow.

In this work, we attempt to construct a turbulence
model for analyzing supersonic flows within the
framework of a turbulent-viscosity representation for
the Reynolds stress. We perform the present
modeling from the following viewpoint.

(i) Turbulent compressibility effects are separated
into two groups. One is the effect through the
compressibility effect on velocity fluctuation, and
the other is the effect of density fluctuation. In the
present modeling, attention is focused on the former
effect.

(ii) In explicit algebraic Reynolds-stress modeling,
the turbulent-viscosity part is still the leading term.
Then a turbulent-viscosity model capturing some
properties of both of supersonic free-shear layer and
wall-bounded flows is expected to give a useful clue
to the further development of explicit algebraic
modeling of supersonic flows.

(iii) In analyzing flows encountered in aeronautical
and mechanical engineering, the simplicity of a
turbulence model is one of the important requisites
for reducing the computational burden arising from

high Reynolds number and complicated flow
geometry. The concept of turbulent viscosity and
diffusivity leads to mathematically simple modeling
of turbulence.

COMPRESSIBLE-FLOW EQUATIONS

Fundamental Equations
The equations governing the motion of a viscous,
compressible fluid consist of the following three:

%)+V-(pu)=0 (nH
J J d 7
T%‘Pui"'gjfpuiuj =_3x'i_+ax_jl“sij 2

%pe+V~(pue)=—pV-u+V~(xV9)+¢ 3)

Here p is the density, u is the velocity, p is the
pressure, e is the internal energy, 6 is the
temperature, g is the viscosity, and x is the thermal
conductivity. The traceless velocity strain tensor s;;

is defined as
dau; .
. =§;i—+;‘:—;-§v.u5ij @)
and the dissipation function ¢ will be neglected in
what follows. Under the perfect-gas assumption, we

have the relation

p=@-Dpe, e=Cyb 5)
where Cy is the specific heat at constant volume,
and y is the ratio of the specific heat at constant

temperature, Cp, to Cy.

Mass-Weighted Ensemble-Mean System
In modeling low-Mach-number turbulent flows,
we usually apply the simple ensemble averaging to a

‘system of fundamental equations. In the

compressible case, however, the advection-related
parts in Egs. (1)-(3), which are of the third order in
p, u, and e, bring several extra correlation terms
linked with density fluctuation. A method for
avoiding this complexity is the use of the mass-
weighted ensemble averaging. There the mean of a
quantity f and the fluctuation around it are defined by

f={fhy=(af)/p, P=(p) (6)
f'=f-f Q)

respectively, where subscript M signifies mass-
weighted, () denotes the ensemble mean, and f
denotes
f=(upe) ®
We apply Eq. (6) to Egs. (1)-(3), and have
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%5@+v-(ﬁﬁé)=4pv.u)+v-<_5n) (11
where the mass-weighted Reynolds stress and
internal-energy flux, R;; and H, are denoted by

Ry ={w'u;}, (12)
H={e'u'}M (13)
and the molecular-diffusion terms related to g and «

were dropped. The ensemble-mean pressure 5 in Eq.
(10) may be rewritten as

p={r-1pe)=(y-1)pé (14)
For (pV-u), we make the simplest approximation
(pV-u)=pV-i = (y-1)pév-i (15)

IMPLICATIONS FROM STATISTICAL
TURBULENCE THEORY BASED ON MASS-
WEIGHTED AVERAGING

The contribution by statistical turbulence theory
to the compressible turbulence modeling is little at
present, compared with the incompressible
modeling. The reason lies in the mass-weighted
averaging procedure. In the averaging, the Reynolds
stress and the turbulent scalar flux are written in
terms of the third-order correlation functions, and
their statistical evaluation is complicated in the
presence of arbitrary mean velocity and scalar.

The turbulence theory based on the mass-weighted
averaging has recently been presented in close
relation to the study of countergradient diffusion in
turbulent combustion (Yoshizawa 2003). The essence
of the theory is the introduction of a new variable
related to the velocity fluctuation by

v=pu'/p (16)
The original fluctuation w" is written as
w_P 1 P
UW=—-VE——r——V=V-—=V+.- an
P 1+(p'/p) P

This new variable obeys the same constraint as on
the velocity fluctuation in a constant-density flow;
namely, we have

v=0 (18)
in the ensemble averaging.

We combine the new variable with the two-scale
direct-interaction approximation (TSDIA) developed
for the study of inhomogeneous turbulence of a
constant-density fluid. A key procedure of the TSDIA
(Yoshizawa 1984, 1998; Hamba 1987) is the scale-
parameter (6) expansion. In incompressible
turbulence, the analysis up to the first order in &

gives a turbulent-viscosity expression for the
Reynolds stress, while the second-order analysis
leads to the nonlinear correction to it as well as the
nonequilibrium expression for the turbulent
viscosity.

In the use of Eq. (16), the primary theoretical
finding about Rj; is as follows. The analysis up to

the second order in & results in

RU =RL:],C +Rij,D (19)
where
2 A
RU,C = §K6U hd VTsij +NT (20)
A 2

1,Di;, Du; 1(Da
R.p=C,—|—t 4 |22 5. 21
v.D P,—,Z[Dt Dt 3[Dt) ‘J 1)

In Eq. (20), K is the turbulent energy, vy is the
turbulent viscosity with the nonequilibrium effects
included, and NT denotes the terms nonlinear in the
mean velocity gradient. There compressibility
effects may occur through the velocity variance. The
effect of density fluctuation occurs in Eq. (21). The
dimensional coefficient C, is related to the density

variance. In this work, we shall focus attention on
R,-j,c.

MODELING OF SUPERSONIC EFFECTS

Nonequilibrium Effects

The simplest expression for the turbulent
viscosity vy is the equilibrium model

vp=C,K?/¢, C, =0.09 (22)

where ¢ is the dissipation rate. A typical flow in
which Eq. (22) cannot perform a reasonable estimate
of turbulence statistics is a temporally-developing
homogeneous-shear flow. There the growth of K and
€ is overestimated. Temporally- and spatially-
developing homogeneous-shear turbulences are
similar to each other in the sense that turbulence
statistics of one flow may be estimated from the
other counterparts through the coordinate
transformation ¢=x/U (U is the mean velocity in
the x direction). A free-shear layer flow of our
primary concern and a spatially-developing
homogeneous-shear flow share the feature that flow
statistics are developing in the downstream (x)
direction. This fact indicates that Eq. (22) needs to be
treated carefully in the study of a free-shear layer flow
whose properties vary in the downstream direction.

It has already been shown that the foregoing
shortfall of Eq. (22) may be rectified by
incorporating the nonequilibrium effect into v as
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= VTE
eipE
KDt ¢
where Cy is estimated as Cy =0.8 by the TSDIA
(Yoshizawa and Nisizima 1993).

Inclusion of Supersonic Effects
A representative nondimensional parameter of a
supersonic turbulent flow is the turbulent Mach

number
My =J(u'2)/6=«/2K/E (24)

where @ is the local mean sound velocity. We should
note that large Mrp is not always linked with
turbulent supersonic effects. Its typical instance is a
supersonic channel flow (Coleman et al. 1995).
There the density fluctuation is high near the wall,
but the logarithmic velocity profile may be
explained though the inclusion of mean-density
variation. A factor distinguishing a channel flow
from a free-shear layer flow is the streamwise change
of flow quantities. The representative quantities
characterizing the degree of streamwise change are
Lagrange derivatives such as DK/Dt.

With the foregoing discussions in mind, we seek a
nondimensional parameter that is capable of
expressing supersonic effects on the turbulent
viscosity vg. Fluid compression is often linked with
the streamwise change of flow properties. Then we
consider that My effects alter the nondimensional
coefficient Cj attached to the D/Dt-related part,
replacing Cp with Cpc that is a functional of Myp.

Specifically, we adopt the simplest expression

Cnc(Mrp)=Cy +CyMyp? (25)
where Cj, is a model constant. Then we have
vp = VIE (26)

v 1 D K?
1+(Cw + CuMr } g 5=
(Yoshizawa et al. 2003).

With homogeneous-shear turbulence adopted as a
typical instance, we show the physical meaning of
the My part in Eq. (26), which is denoted by

21 D K?

= —_——— 2
X T KD & 27
From the standard K —¢ model, we have
M7ES., )
xx(TT] 28)

where S, is the constant shear rate.

In the study of supersonic effects on turbulence,
Sarkar (1995) showed that the gradient Mach number
Mg is an important parameter controlling those

effects. In homogeneous-shear turbulence, it is
written as

Mg =3=le (29)
where ¢, is a characteristic turbulence scale. As the
simplest choice of ¢y, we use the Kolmogorov-
scaling length

L K32 /¢ (30)
which gives

2 =M 31

Here we should note that the inclusion of the My*
term there is not excluded, but that such My -related
part is not expressed in terms of only x. In
correspondence to R;;, the turbulent internal-energy

flux H are modeled as
H=-Lvé (32)
ae
where we adopt g, = 1.

In summary, the present model is entirely he same
as the standard K-&¢ model, except the
nonequilibrium turbulent viscosity given by Eq.
(26). We should note that the present M -related
effects automatically vanish in a channel flow,
giving no spurious supersonic effects there.

TEST OF NONEQUILIBRIUM MODEL

Free-Shear Layer Flow
For examining the validity of the present model,
we apply the model to a plane free-shear layer flow.
We adopt the Cartesian coordinates (x, y,z), where x
is along the two free streams, and y is normal to
them. The flow quantities of the faster stream are
denoted by attaching subscript 1, such as (i;,51,é1),
whereas their slower counterparts are denoted by
using subscript 2.
The two free streams are characterized by the ratios
Yy =Ua/ly, ¥p=P2/P1, Ye=6/6;  (33)
The most important parameter characterizing Mach-

number effects on a free-shear layer flow is the
convective Mach number, which is defined by

Mo=21"2 (34)
ay+ag
In the following computation of a plane free-shear
layer flow, we consider the case
Yu=05 7,=1 7, =1 (35)
We examine the supersonic-effect parameter Cy
in Eq. (26). Under the condition (35), we examine the
case

ﬁ1=4, 122 =2, Mc=1 (36)
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where the velocity was nondimensionalized using the
sound velocity in the free streams. We normalize the
growth rate by the low-Mach-number counterpart and
denote Gy . Figure 1 shows the dependence of Gy on

Cyr- We may see that the decrease in Gy is large for
small Cpr, but that it becomes gradual for C,; = 30.
We adopt Cy, = 30.

For Cy =30, we examine the normalized growth
rate Gy for various convective Mach numbers. The

computed results are given in Fig. 2, with some
observations (Papamoschou and Roshko 1988:
Goebel and Dutton 1991). The former behavior is
consistent with the latter, although the computed
suppression rate is rather smaller than the
observational results. For larger C,,, for instance,
Cyr =60 gives Gy =0.4 at Mg =1 (see the triangle
in Fig. 2), and the Gy curve becomes much closer to

the Langley curve and observations. The present
computed results indicate that the newly introduced
parameter y [Eq. (27)] is instrumental to capturing
the important feature of the growth rate in a
supersonic free-shear layer flow, without generating
wrong effects on a channel flow.

Supersonic Boundary Layer Flow

In the foregoing discussions, we paid special
attention to two typical flows concerning the
streamwise variation of flow properties, that is,
channel and free-shear layer flows. The proposed
turbulent supersonic effect vanishes identically in
the former, whereas it plays a critical role in the
suppression of the growth rate in the latter. As an
intermediate flow, we may mention a supersonic
boundary-layer flow. There the D/Dt-related effects
survive, although they are expected to be small,
compared with those in a free-shear layer flow. It is
known that the primary mean-flow properties of a
supersonic boundary-layer flow are similar to those
of a channel flow and may be reproduced through the
proper treatment of the variation of mean density.
Then it is important to confirm that the present
nonequilibrium model gives rise to no spurious effect
in the analysis of a supersonic boundary-layer flow.

In order to confirm that a boundary-layer flow is
insensitive to the present supersonic effect, we use
the low-Reynolds-number model of K-¢ type by
Myong et al. (1990), and replace only the
equilibrium part of the turbulent viscosity with the
present nonequilibrium turbulent viscosity, Eq. (26).
We apply the forgoing modified model to a
supersonic boundary-layer flow at M_=2 (M, is
the free-stream Mach number). The computed
displacement and momentum thickness are shown in
Fig. 3, with that by the original model by Myong et

al. These results indicate that the present
nonequilibrium effect hardly affects the boundary-
layer growth. This computational result signifies
that the mean-flow properties of a supersonic
boundary-layer flow may be computed without any
spurious supersonic effects.

CONCLUSIONS

In this work, we proposed a supersonic turbulence
model based on the nonequilibrium turbulent
viscosity and tested it for two typical turbulent
flows, that is, free-shear layer and boundary-layer
flows. As a result, we succeeded in reproducing some
representative features of a free-shear layer flow such
as the suppression of growth rate with an increasing
convective Mach number, without generating wrong
supersonic effects on a boundary-layer flow. This is
the first step towards resolving the difficulty in
analyzing free-shear layer and wall-bounded flows by
one model. In the present stage of testing, however,
the selection of the model constants linked with
nonequilibrium and supersonic effects has not been
fully explored yet. In general, turbulent-viscosity
models are insufficient for expressing anisotropic
turbulence properties. For rectifying such a shortfall,
we need to extend the present model to a model of
explicit algebraic nonlinear type. Such extension
and the application to various supersonic flows are
left for future work.
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Fig. 1. nDependence of the normalized growth rate
GN on CM with CN =0.8.
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Fig. 2. Dependence of the normalized
growth rate on the convective Mach number.
Line, present model with Cy =0.8 and
Cy =30 (triangle, Cj =60);broken line,
Langley curve; solid circles, Papamoschou
and Roshko (1988); circles, Goebel and
Dutton (1991).
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Fig. 3. Growth rates of the displacement
(8p) and momentum (5¢) thickness in a
turbulent boundary layer at M_ =2. Thick
line, &p for Cyy =0 and Cy, =0; thin line,
8y for Cy =0 and Cy =0; solid circles,
8p for Cy =08 and Cy =30; triangles,
8M for CN =0.8 and CM =30.
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