ON REYNOLDS STRESS ANISOTROPY IN COMPRESSIBLE CHANNEL FLOW

Holger Foysi
Fachgebiet Stromungsmechanik
TU Miinchen, Boltzmannstr. 15, D-85748 Garching, Germany
holger@flm.mw.tu-muenchen.de

Sutanu Sarkar
Department of Mechanical and Aerospace Engineering
Univ. of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0411, USA
sarkar@ucsd.edu

Rainer Friedrich
Fachgebiet Stromungsmechanik
TU Miinchen, Boltzmannstr. 15, D-85748 Garching, Germany
r.friedrich@flm.mw.tu-muenchen.de

ABSTRACT

Three direct numerical simulations of turbulent supersonic chan-
nel flow have been performed for global Mach numbers ranging from
1.5 to 3 and Reynolds numbers based on friction velocity ranging
from 221 to 545.

By comparison with incompressible channel data it is shown that
compressibility causes structural changes in the Reynolds stresses and
those tensors which determine their transport, e.g., the pressure-rate-
of-strain tensor. Conclusive explanations are provided for the increase
in streamwise Reynolds stress as the Mach number increases, for the
decrease in its production rate and the decrease in the pressure-rate-
of-strain tensor component. Furthermore, outer scalings are provided
for the Reynolds stresses and the pressure-rate-of-strain tensor.

INTRODUCTION

Compressible turbulent channe! flow between isothermal walls
for global Mach numbers up to M = 3 has been first studied by Cole-
man et al. (1995) using direct numerical simulation and a body force
which replaces the mean pressure gradient and is homogeneous in
wall-parailel planes. Their results showed that the How is strongly
controlled by wall-normal gradients of mean density and temperature,
to the point that most of the density- and temperature fluctuations are
a result of solenoidal mixing. Hence, van Driest transformation of the
mean velocity and a semi-local near-wall scaling suggested by Huang
er al. (1995) for rm.s. velocity and vorticity fluctuations proved to be
successfull in collapsing compressible and incompressible data. Fur-
ther investigations into intrinsic compressibility effects (Huang, 1995)
showed that explicit compressibility terms like pressure-dilatation
correlations and compressible dissipation rate are negligibly small up
to Mach numbers of 3 and that the turbulent kinetic energy and its
production rate scale with the wall shear stress, T,,, and with T,.u,, //1
(the bulk velocity and channel half width), respectively. Lechner er
al. (2001) provided more details about the nature of fluctuating vari-
ables and structural compressibility effects in compressible isother-
mal channel flow at M = 1.5. They presented budgets for all Reynolds
stress components and demonstrated that production, dissipation, dif-
fusion and pressure-strain terms, coincide with the corresponding
incompressible terms (Kim, 1989) in the channel core when scaled
with Teuy, /i Li et al. (2002) addressed compressibility effects in

high-speed compressible channel flow between isothermal walls. Fol-
lowing Coleman er al. (1995) they used a dynamic energy sink to shut
off the heat generated by mean and turbulent dissipation. This leads
to uniform mean density and temperature profiles across the channel,
thus removing effects due to mean property variation, and revealing
the pure role of dilatational fluctuations. For a center-line Mach num-
ber of 6.2 they found that the pressure-dilation term reaches 17% of
the peak turbulent kinetic energy production. Recently, Morinishi et
al. (2003) investigated compressible turbulent channel flow using a
B-spline collocation method in their DNS. They validated their nu-
merical algorithm against the M = 1.5, Re = 3000 case of Coleman
et al (1995) and computed a second flow with the same M, Re pa-
rameters, but with one isothermal and one adiabatic wall. This case
is of considerable interest, since it shows that the mean velocity nor-
malized by u; matches incompressible channel data on the adiabatic
wall side without van Driest transformation, while the part of the pro-
file starting from the isothermal wall side matches Coleman er al.’s
(1995) data and deviates from incompressible data due to mean prop-
erty variations.

This paper focusses on compressible channel flow between
isothermal walls at various Reynolds and Mach numbers. It addresses
changes in Reynolds stress anisotropy and in the behaviour of the
pressure-rate-of-strain tensor in more detail and provides conclusive
explanations for these effects.

DESCRIPTION OF THE NUMERICAL METHOD AND
DNS PARAMETERS

The numerical method starts from a pressure-velocity-entropy
formulation of the compressible Navier-Stokes equations:
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where p,uj,s,p represent pressure, Cartesian velocity components,
entropy and density, respectively. The components of the heat flux
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vector ( , viscous stress tensor T and dissipation rate & read:

qi = Alg—:’_, Tjj = 2usij ~ %!’kasij» 4
D = 1)sij, -Vi/:% <§TM:+?—)‘C’/> 5

The thermal equation of state
p=pRT, R=C,-C, (6)

and the following laws for dynamic viscosity u and heat conductivity
A close the set of equations:

T n C,
e e

The Prandtl number Pr and the ratio of specific heats y are kept at
constant values in the temperature range considered, namely Pr =
0.7, vy=C,/C, = L4. The body force term f&;; in the momentum
equation replaces the mean pressure gradient in streamwise direction
and is uniform in 3D space. Thus, fully developed turbulent flow
can be handled using periodic boundary conditions in stream- and
spanwise directions. Following Sesterhenn (2001) equations (3) are
cast in a characteristic non-conservative form which contains ‘fluxes’
of the form

I dp | du

+ —) (no sumimation!) (8)

XF=(te) —=
! (ui()<pl,' ox; ox;

in the hyperbolic part of the Navier-Stokes equations, describing
transport in positive and negative coordinate directions. Here, ¢ =
\/Yp/p is the speed of sound. The advantage of this special form
(Sesterhenn, 2001) is that wall boundary conditions can be derived
consistently with the equations. At a solid isothermal and stationary
wall normal to the x3-direction, at which

dui _oT

R P — 3
5 =3 =0 =120 ©

we obtain the boundary conditions:

2 J13;
b y— . 29T
S (10)
op n _
a_lf = —i’;(x;JrX}) (n
ds R . _
¥ - Z(Xz +X3) (12)

which show explicitly that p,s evolve in time at the wall. A compact
Sth-order upwind scheme of Adams and Shariff (1996) is used to dis-
cretize the hyperbolic (Euler) terms in (1-3). The viscous and heat
conduction terms are discretized with a compact 6th order scheme
of Lele (1992). The solution is advanced in time with a third-order
‘Jow-storage* Runge-Kutta scheme, proposed by Williamson (1980).

Three direct simulations have been performed for different flow
parameters. The global Mach and Reynolds numbers for fully devel-
oped channel flow read

M= ”(l\’/(~'\\'7 Re = pm“m'h//-’w- (13)

The bulk-averaged density p,, is defined as p,, = f" pdxs/h, uy is
the Reynolds (rather than Favre) cross-sectionally averaged veloc-
ity. The speed of sound and viscosity are computed for constant
wall temperature T,., while / is the channel half width. The friction
Reynolds number Rey = pyuch/phy, with uz = /7, /py. is a result of
the simulation. Table 1 summarizes the flow parameters, box sizes
and numbers of grid points used in the three cases A-C. Equidistant
erids are used in (x].x2)-directions. In the wall-normal x3-direction,
points are clustered following tanh-functions (Lechner, 2001). The

Table 1: Flow and computational parameters

Case M Re Re, L—I:L L—lfl ]%
A 1.5 3000 221 47 4r/3 2
B 2.5 5000 455 2n 2n/3 2
C 3.0 6000 545 2n 2n/3 2

Tablé 2: Flow and computational parameters (cont.)

Case Ng No Nag A Ay Ax oo
A 192 128 151 1446 723 502
B 256 128 201 1ll6 744 746
C 25 128 201 1337 891 938

first gridpoint is below x; = 1.5 and the tenth at x§ < 17.62 (case C).

MEAN MOMENTUM TRANSPORT

Compressible channe] flow driven by a mean body force Fi8i is
homogeneous in planes parallef to the walls. For the mean mass fluxes
we therefore get:

(par,pi2, pi3)” = (piiy (x3),0,0). (14)

The tilde denotes Favre averaging. The Reynolds averaged wall-
normal velocity @3, on the other hand, is nonzero and equals the mean
Favre fluctuation:

=i = /5 as)

The mean momentum balance in streamwise direction reads

J — L, F
0= —*(‘hg—pll’{tl'{)-{-.ﬂ (16)
ox3 -
Integrating this from the wall to the centre-line (x3 = h) provides the
spatially homogeneous body force that replaces the mean pressure
gradient:
;T ap
=— =—c—. (W)
I h ox 1
Integrating (16) from the wall to a position x3 shows that the total
shear stress (sum of Reynolds and viscous stress) varies linearly, as
in incompressible channel flow. In wall units (py;., thw, itx = 4 [T/ Pre)
we get:
o om*  puluf __n

)

Hw a";— Ty h

where we have neglected correlations involving viscosity fluctuations,
since they are small in supersonic flow (Huang, 1995). The mean
mormentum balance in wall-normal direction is:

0=—%(ﬁ—P“§/2—’Tﬁ) (19
3

After integration and assuming Ts3 = 4 /3003 /dx3, we obtain in wall
units:

7= Dw . 4 @ am+ P“gz

= (20)
Ty 3 hy ai\f;+ Tw

The first term on the r.h.s. is associated with the mean dilatation. It is
small everywhere in the channel (Figure 1).
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Quter scaling: From (18) it is clear that pu” ! scales with T, in

the core region where viscous stresses are negllglble Similarly, pu”7
and (P — py.) scale with 1, there. Figure | shows the normalized
pressure difference together with profiles of the viscous term in (20)
for cases A-C and incompressible channel flow. In all cases does the

2 L.
Reynolds normat stress pu''? control the mean pressure variation.

Inner scaling: Huang e al. (1995) have suggested semi-local
scaling to collapse compressible data onto incompressible ones. We
adopt this scaling here and use the local values of P, rand

u:;:\/‘C,.-/Ezuﬂ/p“./ﬁ 210

The non-dimensional wall-normal coordinate then is X3 = puix3/H.
As demonstrated in Figure 2. the non-dimensional pressure differ-
ence, (P — py) /T and hence pu’”/‘cw collapse much better for dif-
ferent Mach numbers in the wall layer'when plotted against x3. While

the van Driest transformed velocity, if ) = “ \/p/p"du] plotted
against x} collapses the ploﬁ]es in the log-layer, it is a viscosity-

transformed velocity, uf, = ” p/yudﬁ] . which makes the profiles
coincide in the sublayer (Figure 3).

REYNOLDS STRESSES AND THEIR TRANSPORT

From the momentum balance (18) and the fact that the correla-

tion coefficient of pufuy is practically independent of Mach num-
I”)

ber (Coleman, 1995), we conclude that puy© and pu”2 finally all
Reynolds stresses scale with 1, in the channel core. Figure 4 contains
profiles of pu’” for three incompressible and three compressible cases
as an example to show that the outer scaling applies for x3 /4 > 0.4,

An explanation for, why pu® /1, in the case of compressible flow
overshoots the corresponding incompressible values in the buffer re-
gion has to start from its transport equation, viz:

0= —pillu ,{illl ai} (pllgllg/z_L’,!T”) +
—(FT o au ou'
1" e N I L
: <r7x3 oxy > o ox) r“a o

The terms describe production Py, turbulent and viscous diffusion
TDy\, VD), mass flux variation My, pressure- rate-of-strain cor-
relation T1;) and turbulent dissipation DS);. Since the ’pressure-
diffusion’ term drops out, I} equals the velocity-pressure-gradient
term VPG, The balance (22) normalized by Tyiter/h 1s shown in
Figure 5 for one incompressible and the compressible case C. Here,
tgv 18 the bulk velocity defined by u,, = f;! #7d(x3 /h). The produc-
tion terms peak in the buffer layer (x}+ < 30). Compressibility reduces
the production rate and at the same time reduces turbulent dissipation,
turbulent transport and redistribution (IT;(). The reduction of the lat-
ter three terms together is greater than the reduction of Pj. This is
why the level of pu|? /t,, is higher in compressible channel flow with
isothermal walls.

The reduction in the production rate will be explained now. We
compute the spatial extremum of Pj; via:

_(_/J pu”u/{ (Iﬁ;r ~ ([+ _pujuy digt 0 o
dx; Ty (lx;r dx] Ty dxy
For high Reynolds numbers the Reynolds shear stress satisfies in the
buffer layer the simplified relation (18):

B puuy | T

=1-— . 24
Ty the zl)c3+ @4
Using this in (23) and differentiating, we get:
LICMS (LT'% 2 ‘Wi""/dzm?+ 25)
My dxy 2 dx3 dx3 dxt”

For channel flow between cooled walls the term in the bracket add§ to
a quantity larger than 1, since d(ii/u)/dxf > 0 and d*T Jdxf” <
0. Hence,

o odigt |

Adit 1 26)
e (I)c;L 2

and, from (24), it follows that

// "
_paky L : @n
Ti 2

The corresponding relations for incompressible channel flow are that,
at the point of maximum production Py,
dit 1 iy 1

== - SN 28
dxf 2’ u? 2 @8)

In compressible channel flow between cooled walls, the Reynolds
shear stress and the peak production of pu/ 2 and pk are therefore re-
duced with respect to incompressible isothermal flow as a result of
viscous heating. The upper bound (Re; —+ o) for the peak production

rate is:
pu u-‘ du] < 1 (29)
Te  dxl 4
h 3/ Rer—res

REYNOLDS STRESS ANISOTROPY

The Reynolds stress anisotropy tensor is defined by

p”nuu i
L A i
pu"u" 3

bij= 30)
In order to show how its four components are affected by compress-
ibility, we concentrate on two flow cases, namely incompressible
channel flow at Re; = 590 and compressible channel flow at Ma = 3,
Rer = 545, see Figure 6. The compressibility effects we observe in
the channel are in agreement with corresponding effects in homoge-
neous shear flow (Sarkar, 1995), namely an increase in all normal
stress anisotropies and a decrease in the shear stress anisotropy with
increasing Mach number. The state of b;; is well characterized by its
two invariants /7, I1]. Figure 7 shows Lumley’s triangle and the turbu-
lence state for case C only, for clarity. There is hardly any difference
to the incompressible case (not shown). Near the wall the turbulence
state is two-dimensional. At around x;“ =16 it is closest to |D and
then approaches a nearly isotropic state in the core region. The cross
marks a case of incompressible homogeneous shear flow (Ristorcelli,
1995).

PRESSURE-RATE-OF-STRAIN TENSOR

An important issue concerning turbulence modeling is the reduc-
tion of terms involving pressure fluctuations, like the redistribution
[1;; and velocity-pressure-gradient term (VPG;;). Figures 8 and 10
to 12 contain profiles of I1;; normalized with T,.u,, /A and plotted
against x3//i for cases A-C and the same incompressible cases used
in Figure 4. The collapse of curves in the channel core is striking. At
the same time there are strong effects of Reynolds and Mach number
in the wall layer.

Outer scaling: Tyu,,/h can be shown to be the proper outer
scale of all components of the pressure-rate-of-strain tensor IT;; =
p'(uf;+1 ;). Tts trace is non-zero, but small compared to the
solenoidal dissipation rate of pk (TKE) and it increases with Mach
number (Huang, 1995). The outer scaling of IL;,

nij = (Tw/l7)unvﬁj(x3/h) (€Y
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is obtained by first noticing, from the Reynolds normal stress trans-
port equations, that [1;; and €;; = 2/3ped;; are of the same order (see
Figure 5) when y/h > 0.2, and then estimating the dissipation rate of
k as follows. The mean total enthalpy equation integrated across the
half channel relates the wall heat flux ¢, to the pressure work done in
the channel:

Guw = ~Tyllyy (32)

Similarly, the integrated mean internal energy equation provides

- T 2
G / <ﬁ ((—L-‘L) +§£) dxy (33)
Jo dxy

The contribution by the pressure-dilatation correlation, p'u! ;. has
been neglected. An estimation of the direct dissipation part in (33)
is obtained using partial integration:

/h_ dm 2 . __(/W ‘ 5
| — x3y = | i— -
0 a dx; @ H Ix3 0

h_d duy
wy— | g— | dx3 > up Ty 34
/() 4] (IX3 (“(I)C} ) axy U Ty (34)

Combining relations (32) - (34) therefore implies that, in the outer
layer,

pe = (Tu /Mg fe(x3/h), (35)

consistent with (31).

Inner scaling: As shown in Figure 8, the magnitude of IT;; and
similarly that of I'ly; and Il33 (Figures 10,11) is reduced in the wall
layer, when the flow is compressible. IT;3, presented in Figure 12,
partly follows that trend as well. If we assume an inner scaling for
[1;; in the case of incompressible flow of

Tt

AY

2
- Ty
(Tijine = =+ fij(a7) = ﬁj,-_,-(xi) (36)
and suppose that this scaling holds for compressible flow with ,\'3+
replaced by x3 = x3puz /i and p replaced by g, then the following
relation explains the observed reduction in IT;; in the inner layer:

Tyllgy Uy phy ,
M/ (ﬁ) = Ree—=H2 g (x}). (37)
h Ugp H

For the same Reynolds number, the reduction in IT;; is partly due to
the well-known decrease in ur/u,, (i.e. skin friction) with increasing
Mach number, and partly due to viscosity variation. Figure 9 presents
I1;; normalized by tﬁ. /H as a function of x§ for the same cases as in
Figure 8. The large differences in 1], due to M and Re; in the wall
layer seen in Figure 8 are now clearly reduced by this scaling.

CONCLUDING REMARKS

DNS data of compressible and incompressible channel flow have
been used to analyse changes in Reynolds stress anisotropy and in
the behaviour of the pressure-rate-of-strain tensor.

Explanations have been given for the reduction in Reynolds shear
stress, peak TKE production rate and pressure-rate-of-strain tensor
components with increasing Mach number. Conclusive outer-scaling
‘laws are presented.

A better understanding of the behaviour of pressure fluctuations in
compressible channei flow is still needed based on an analysis of
the pressure Poisson equation in order to unravel the role of density
fluctuations in the channel core and of the mean density gradient in
the wall layer.
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Figure I: (P p,;}/7,.. is plotted as a function of x3/h. Compressible
cases: —— . Rer = 545, Mu = 3; = ==, Re; = 455, Ma = 2.5;- - -
- Ree =221 Ma=1.5; -« - $ L 25 for Re, = 545, Ma = 3.
- W 3

Incompressible cases (Moser, 1999) : A Re; =590, 0 Rer =395;0
Rer = 180).
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Figure 2: (7 — p\)/1,. is plotted as a function of x;. Compressible

cases: <Rer =545 Ma=3; ~——  Re; =455, Ma =25 - -
S Ree=220L Ma=1.5; -« 4 LU0 for Re; = 545, Ma = 3.
- W Mg

Incompressible cases (Moser, 1999) : A Rer = 590; 0 Re: =395, 0
Rer = 180.
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Figure 3: Profiles of f;' fi/u,.diy* (lines) and the Van Driest trans-
formed velocity (symbols) . s x_:’; ===, 0 Rer =545, Ma=3;
e A Rey =455 Mg =25 ... ,O.Rer =221, Ma= 1.5
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Figure 4: E;’l’*z normalized by 1,.. Compressible cases: ,Re; =
545, Ma=3;,——— Re; =455, Ma =2.5;----,Re; =221, Ma =

1.5, Incompressible cases (Moser, 1999): © Rey = 180; O Re, = 395;
+ Rer = 590.
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Figure S: puf 2 /2-balance. The lines show case A, the symbols denote
the incompressible data of Moser (1999), Re, = 180.
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Figure 6: Profiles of all four components of the anisotropy tensor
bij = pulu’; [puju) — 1/38;;. Case C, Re; = 545, Ma = 3; —— |
biy;—=—=.byi----, b3z; ==, bi3. Rey = 590 (Moser, 1999): O

by1; & b2 0 b33; O by,

—1107—



O3 1 1= Lbiby
0.25 E
02F ’ g 1
0.15 } ’ R

01} 4 ]

0.05

0 0.01 0.02 0.03 004 005 006 0.07
i = %hiibikbjk

Figure 7: Anisotropy invariant map for Re; = 545, Ma = 3. 4,: homo-
geneous shear flow (Ristorcelli, 1995)
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Figure 8: Tlj) normalized by Ty.utqy /h. Compressible cases: —— ,
Rey =545, Ma=3; —— =, Re¢ =455, Ma=25;---- Re; = 221,

Ma = 1.5. Incompressible cases (Moser, 1999): © Re; =180; 0 Rer =
395; + Rer = 590.
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Figure 9: T1}; normalized by 2. /H using semi- local scaling. Compress-
ible cases: . Rer =545, Ma = 3; — ==, Reg =455, Ma = 2.5;
oo wa, Reg =221, Ma = 1.5, Incompressible cases (Moser, 1999): ©
Rep = 180: U1 Rer = 395; + Re = 590.
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Figure 10: Iy normalized by u,ty/h. Compressible cases: —
Rer =545, Ma =3, - ——, Rer = 455, Ma=2.5;----, Rey =221,
Ma=15 -  Re; =181, Ma=10.3. Incompressible cases (Moser,

1999): © Re; = 180; O Rer = 395; + Rer =590

o} 0.2 0.4 0.6 0.8 1
xg/h
Figure 11: Tl33 normalized by unty/h. Compressible cases: —— .
Req = 545, Ma = 3; — — —, Reg = 455, Ma=125;----,Re; =221,

Ma=1.5. Incompressible cases (Moser, 1999): © Re; = 180; O Rer =
395; + Rey =590.
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Figure 12: IT;3 normalized by uavThw /h. Compressible cases: ——,
Re, =545 Ma=3;--=—, Rec = 455, Ma=2.5; - - - -, Rey =221,
Ma=15,--- L Rer =181, Ma=0.3. Incompressible cases (Moser,

1999): ® Rer = 180; O Rer = 395; + Rer = 590.
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