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ABSTRACT

In the Earth’s atmosphere, zonal currents with a ver-
tical velocity gradient S, are induced under the action of
rotational frequency ) and horizontal temperature gradient
Sgr. These currents satisfying the so-called ”thermal wind
equation” generate the cyclones and anticyclones through
the baroclinic instability, and hence have serious effects on
the global circulation. The thermal wind is always under
the influence of the density stratification. The effects of den-
sity stratification is typically represented by the Richardson
number, which is defined as

where N and S, are the buoyancy frequency and the mean
shear rate, respectively. At first, we studied the effects of the
Richardson number on the thermal wind. With the increase
in the Richardson number, the vertical velocity is suppressed
and the velocities become two-component. This flow, in-
dependent of the Richardson number, becomes vertically
collapsed, and the streamwise jets become the dominant flow
structure. The pressure gradient becomes almost zero in the
streamwise direction, which makes jets homogeneous in this
direction.

The critical Richardson number for stabilizing turbulence
is strongly dependent on the Coriolis term; the Richardson
number needs to increase for stabilizing a shear flow with the
large rotational effect. At the sufficiently large Richardson
number, however, turbulence becomes vertically collapsed
structure as observed in the case of the small Coriolis effect.
Interestingly, turbulence cannot be geostrophically balanced
between the pressure and the Coriolis terms; the pressure
gradient term becomes negligibly small in comparison to the
Coriolis term.

INTRODUCTION

Recently, the combined effects of rotation and stratifica-
tion are attracting the attention from the geophysical point
of view (Cambon, 2001 and Rile & Lelong, 2000 are recent
review papers on these studies). In almost all these stud-
ies, the density stratification is imposed in the gravitational
and rotational direction, and hence the baroclinic instabil-
ity is usually negligible (e.g., Bartello, 1995, Metais et al.,
1996, Smith et al., 2002). Although this flow configuration
is simple and easy to be numerically simulated, imposing
the horizontal temperature gradient is more practical in the
geophysical as well as the engineering flows. The horizon-
tal temperature gradient, coupled with the rotation, induces
the mean flow, i.e., thermal wind (Gill, 1982).

We numerically simulated the most basic form of the
stably stratified thermal wind, i.e., a rotating homogeneous

shear flow under density stratification, to study the funda-
mental effects of rotation, shear and buoyancy on the basic
turbulent statistics and structure. Many previous studies
indicated that when the strong stable stratification was im-
posed in a homogeneous shear flow, turbulence collapsed into
the horizontally thin layers (e.g., Gerz et al., 1989, Holt
et al., 1991 and many others, see Riley & Lelong 2000),
although, to authors’ knowledge, no study is done for the
combined effects of rotation and mean shear.

Stably stratified rotating turbulence, devoid of the in-
ternal gravity wave, is represented by either the simplified
dynamical equations of Riley et al. (1981) or the stratified
quasi-geostrophic equations (Charney, 1971 and many fun-
damental text books on geostrophic turbulence such as Gill,
1982 and Pedlosky, 1986).

In the quasi-geostrophic equation representing both the
low Froude number and the low Rossby number turbu-
lence, the pressure gradient is balanced with the Coriolis
terms and the vertically elongated vortex columns become
dominant flow structures with the development of the time
(McWilliams et al., 1995). When the Froude number is
much smaller than the Rossby number, turbulence nondi-
mensionalized by the length scale L and the velocity scale
U is represented by the Riley’s equation given by:

a 1
3‘!91_:{ +uyg - Vuyg + Fr2w—a——z—uH + Ees X Uy
1
= —Vup+ ——Viun, ©)

Rp
&

Viun + Fr2 =2 =, (3)
Oz

a o
Fr? (7;?” +uy - Vw + Frzwa—j)

2
= —— —p+ =V, “

ap 5, Op 1 2

— -V F — —w=——V*p, 5
g TR VeI wS —u= Ve )
where Fr(= L/NU), Ro(= L/2QU) and Re(= UL/v) are
the Froude, Rossby and Reynolds numbers, respectively. In
the small Froud number limit, the equations are reduced in
the following ones,
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In this Froude number limit, the vertical component of the
nondimensionalized velocity becomes negligibly small and
the divergence-free condition can be satisfied within the hor-
izontal velocities (see Eq. 7). It also should be noted that
the pressure gradient is vertically in balance with the buoy-
ancy (see Eq. 8). As a result, the horizontal velocities are
not directly, nor indirectly affected by the buoyancy: both
the first and second equations (see Eqgs. 6, 7) are solved in-
dependently of the other two equations (see Egs. 8, 9); this
equation clearly shows that once turbulence collapses, this
structure is independent of buoyancy.

Embid and Majda (1996) decomposed the horizontal ve-
locity field u, satisfying the above equations, into

ug = Uy + VY, (10)

where Ug (z,t) = f ug (z,y, z,t)dzdy is a vertically sheared
periodic homogeneous flow (VSHF) and 4 is the horizontal
stream function.

The vertical shear Uy satisfies the following equation;
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In the above equation, the pressure force does not affect the
VSHF. It is also noted that when the vertical shear is hori-
zontally anisotropic, the Coriolis term induces the oscillation
between the horizontal velocities as discussed later.

The previous studies (Embid & Majda, 1998; Smith et
al., 2002) showed that at large S(= N/f), the non-linear
triad interaction enhanced the VSHF fluctuations and atten-
uated others. However, all these studies are on homogeneous
flow without a mean shear and the parameter S is considered
to be most important for determining the flow structure. In
the stratified shear flow, however, the Richardson number
is also considered to determine the flow structure. In our
study, a homogeneous shear flow is numerically simulated to
study the structure of the thermal wind and discuss which
parameter can well represent its turbulent structure.

NUMERICAL METHODS AND FLOW CONDITIONS

Direct numerical simulations of a spectral method are
carried out for a homogeneous shear flow under system
rotation around the x3 axis. Both the mean temper-
ature gradient and the gravitational acceleration g are
simnultaneously imposed in the x3 direction to include the
effects of both buoyancy and rotation. Three-dimensional
Navier-Stokes equations are solved numerically. The
governing equations for the mean and fluctuation velocities
are shown in the following,

-Equations on mean velocity and temperature-
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-Equations on velocity and temperature fluctuations-

Table 1: Flow conditions at S, /! = 20

TWU.1A__ 0.2A 0.3A [18:7.3 TX 36A
Ri 0.1 0.2 0.3 0.5 T 36
Pr 0.71

3.16 3,47 5.48 7.07 10 50

Cy —1 —0.5 —0.333 —0.2 —0.1 —2.78 x 10—3
Req 65.4
B 0.798
Rog 128
Frg 396 2.80 5.20 T.77 138 0.200

The subscript 0 represents the initial value.

Table 2: Flow conditions at S./Q =1

0.25B 0.58 0.88 15 p2:) ¥z} 165 368

—Ri_ 095 [N:) T8 T z ) 16 36

Pr 0.71

3 0.25 0.354 __ 0.447 0.5 0.707 141 p] 3

Cg =3 —2 —2.5 —2 =1 =0.25  —0.125 ___—0.086 _

Reg 65.4

B 0.798

Roq 0.626

Frg 1.25 1.77 1.40 1.25 0.885 __ 0.442 0.313 0.209

Table 3: Flow conditions of S,/ # 1, 20

ase 50 0.5D 0.5E 1C 1D 1F 1F
Ri 0.5 1
Pr 0.71
Ei 0.014 0.088 0.177 0.02 0.125 0.25 2.5
i 0.04 0.25 0.5 0.04 0.25 0.5 5
Cg —100 —16 —8 —50 —8 —4 —0.4
Req T5.4
S; 0.159 0.399 0.798 0.160 0.399 0.798 3.99
Ro 0.125 0.313 0.313 0.125 0.313 0.313 0.626
—Fr—— 586 5 T7T 626 350 135 0.35
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In the above equations, capital letters represent the mean
values, while small letters represent fluctuations. Mean ve-
locity gradient is represented by S, while Spiz and Spv
represent mean horizontal and vertical temperature gradi-
ent, respectively. In the thermal wind, the following relation
between shear and temperature gradient will be obtained by
taking the curl of Egs. 13 and 14,

SgH = ——QQSu/g,B. (18)

In the flow with a mean shear induced by the baroclinic
instability, the flow stability should be considered, which
is possibly determined by the Richardson number. In the
earth’s atmosphere, Ri is approximately about 100 when
the mean shear is relatively weak in comparison to buoy-
ancy (MclIntyre, 2000). On the other hand, §(= N/f) is
about 10 in the ocean and 100 in the atmosphere(Gill, 1977).
Hence, S,/ is about 10 in the atmosphere when the mean
shear is relatively weak. In our numerical simulation, both
cases of S, /Q=1, 20 are studied at the different Richardson
numbers, to clarify the rotational effect.

The flow conditions of these cases are listed in Tables 1,
2 and 3. In the cases of S. /=20, which are represented by
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the case of A, the Richardson number is varied from 0.1 to
36. In these cases, N/f is much larger than 1 and approxi-
mately the same value as the ocean and the atmosphere. On
the other hand, in the cases of S, /=1 represented as B,
the Richardson number is from 1 to 36, and N /f is almost
equal to or less than 1.

RESULTS AND DISCUSSIONS

At first, we will discuss the instability of flow at the differ-
ent Richardson numbers and the different S, /S2. Secondly,
the structure of collapsed turbulence at the large Richardson
number and its dependence on the Coriolis term is studied.
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Figure 1: Time development of turbulent kinetic energy at
different Richardson numbers in cases of S, /€ = 20.
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Figure 2: Time development of turbulent kinetic energy at
different Richardson numbers in cases of Su/1=1.

Figs. 1 and 2 show the time development of the turbu-
lent kinetic energy in the cases of the different Richardson
numbers. In the stably stratified shear flow, the critical
Richardson number, i.e., the criteria for the flow stability,
is approximately 0.25. In the cases of S, /€ = 20, the criti-
cal Richardson number is almost 0.3 and in agreement with
the previous criteria (see Fig. 1). This condition, however,
cannot be applied to the thermal wind, which definitely un-
stable at this Richardson number. In this flow condition,

the density stratification needs to further increase for atten-
uating the flow instability. In the flow of Ri > 1, however,
turbulent kinetic energy decays with the development of the
time and the critical Richardson number should be around
this.

Figure 3: Time development of turbulent kinetic energy at
two different Richardson numbers of several different § =
N/2Q.

We study how S(= N/f) affects the flow instability at
Ri =0.5 and 1, where turbulence decays and increases, re-
spectively (see Fig. 3). In any cases of the Richardson
number, the smaller S, i.e., large rotational effect, reduces
the correlation among the velocity and the temperature fluc-
tuation, which attenuates the buoyancy effect as well as the
shear instability. Hence, increase in turbulence kinetic en-
ergy is leveled off and turbulence reaches the equilibrium
state.

This rotational effect, however, depends on the Richard-
son numbers. At Ri < 1, the large N/f enhances the flow
instability and increases the turbulence kinetic energy, al-
though the further increase in N/f stabilizes the flow. On
the other hand, at R: > 1, the increase in N/f attenuates
the flow instability and reduces the turbulence energy; this
flow condition is almost always satisfied in the environmental
flow.

In the next, we study the Richardson number effects on
the turbulent structure. Figure 4 shows the time develop-
ment of the second and the third invariants on the Reynolds
stresses, which are plotted on the Lumley’s invariant map
(Lumley & Newman, 1977). At the smaller Ri, the plot
approaches upward to the right-hand-side of the triangle,
which represents turbulence having one larger component
of the Reynolds stresses than the others; the shear insta-
bility enhances the streamwise component of the Reynolds
stresses. At the large Ri, however, the plot approaches to
the upper-side of the triangle and turbulence becomes two-
component as typically observed in stratified turbulence.

To investigate the further detail of the flow structure, we
study the time development of the Reynolds normal stresses
in the cases of the different Richardson numbers and the
different S, /Q (Figs. 5 and 6). In the case of S,/ = 20,
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Figure 4: Time development of second and third invariants
of Reynolds stresses.
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Figure 5: Time development of Reynolds normal stresses at
Ri=1, 36 of S, /Q = 20.

it is noted that each horizontal Reynolds stress at the large
Richardson numbers is collapsed into the single curve. This
is also true in the cases of S./Q = 1; no definite difference
observed in the cases of Ri =4, 8, 16, 36 indicates that the
turbulent structure is independent of the Richardson num-
ber after the turbulence collapse. This should be because
collapsed turbulence is dynamically governed by the Liley’s
equation where the velocity equations are independent of
buoyancy.

There is a notable difference between S,/ = 1 and 20;
in the case of S, /2 =1, E and u_g oscillate and exchange
their energy. Their oscillation frequency is the half of (2,
though each fluctuating velocity oscillates at .

The time development of the velocity spectra is shown in
Figs. 7 and 8. We can see that with the development of the
time, the energy of the streamwise velocity is concentrated
/in the region of k1 = 0; the flow becomes homogeneous in
the streamwise directions. In the spanwise direction, the
most energy is concentrated in both k3 = 0 and 1 regions.
The energy in the other regions of the wavenumbers is almost
negligible, indicating that the collapsed turbulence is almost
VSHF and governed by Eq. 11.

The instantaneous isosurfaces of the streamwise and the

Uty

Figure 6: Time development of Reynolds normal stresses at
Ri=1t0 36 of S, /2 =1.
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Figure 7: Time development of energy spectra E11(k1) and
F11(k2) from t = 0 to 20 in the case of S /1=20 and Ri=36.

spanwise velocities are shown in Figure 9. All isosurfaces in
the figures are extended into the streamwise direction and
representing the jet structures. It is also noted that the jets
of the different directions are piled up on each other.

For further detail, the typical example of the instan-
taneous velocity vectors is shown in Figs. 10. The two
streamwise jets of the opposite flow direction are clearly
noted; the velocity vectors are mostly aligned in the stream-
wise direction. The pressure fluctuation takes longitudinally
constant, which makes the flow homogeneous in this direc-
tion. On the other hand, there is the spanwise pressure
gradient which redirects the spanwise velocity into the ver-
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Figure 8: Time development of energy spectra E1; (k1) and
Eq1(k2) from ¢t = 0 to 20 in the case of S, /Q=1 and Ri=36.

Figure 9: Isosurfaces of horizontal velocities u and v in case
of Ri = 36 and S./Q = 20, (a) Black, v = —1.5; Gray,
v = 0.5, (b) Black, u = 1.5; Gray, v = —0.5.

tical one and makes it smaller than the streamwise one as
shown in Fig. 5. The above-mentioned jet structure as well
as collapsed turbulence is observed also in the case of strong
rotation effect, though not shown here.

Finally, the transport mechanism of the Reynolds
stresses is studied in collapsed turbulence. Figures 11 and
12 show the budget of u? and v2 in the cases of S, /Q=1 and
20. In the case of S, /Q=20, the production term of u—% is
balanced by the time derivative term, while both the Coriolis
term and the streamwise pressure-strain term are negligibly
small after ¢ = 4. In the v2 budget, the pressures-strain term
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Figure 10: Velocity vectors in z-y plane and contours of
pressure fluctuations, St=20, S,/ = 20, Ri = 36.
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Figure 11: Budget of «2 and uZ at Ri = 36 of S, /Q = 20.

is balanced by the time derivative term. Figure 11 indicates
that this flow is governed by the equation associated with
the VSHF in the streamwise direction and the pressure term
is negligible in this direction.

At S, /=1 (see Fig. 12), the time derivative term is
balanced by the Coriolis term; both the production term and
the pressure-strain term are negligibly small in comparison
to the Coriolis term. This is also true in v_2, and the pressure-
strain term is almost negligible in comparison to the others.
This flow is also governed by the VSHF equation and the
Coriolis terms is balanced by the time derivative terms in
both horizontal and streamwise directions.

CONCLUSION

In the thermal wind, even if the Coriolis term is included,
the Richardson number still becomes the most important
parameter to determine the flow structure. As long as the
Richardson number is sufficiently large, turbulence becomes
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Figure 12: Budget of E and u_g at Ri =36 of S, /2 =1.

two-component: the horizontal components of the Reynolds
stresses surpass the vertical component. Once turbulence
collapses, however, the Richardson number does not affect
turbulent structure because the horizontal velocities become
independent of the buoyancy.

After turbulence collapses, the flow becomes homoge-
neous in the streamwise direction and the streamwise jets
become the dominant flow structures. This flow structure is
mostly governed by the VSHF equations used for strongly
stratified flow, where the pressure gradient term becomes
almost negligible in the horizontal direction.

The critical Richardson number Ri. for turbulence col-
lapse depends on the rotational effects. At the large S, /Q,
Ri. is almost the same as the typical value used in stratified
turbulence. At the small S, /€, however, the flow is more
unstable, and the Richardson number must be increased to
level off the turbulent kinetic energy.

In the budget equations of the horizontal Reynolds
stresses, the pressure-strain term becomes negligibly small
in comparison to the Coriolis term or the production term.
Especially at the large rotational effect, the Coriolis term
dominates the budget equations of the horizontal Reynolds
stresses and the time derivative terms are, as a result, bal-
anced by the Coriolis term, which results in the oscillation
of the horizontal velocities.
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