A NEW Ky-KyLy TURBULENCE MODEL FOR HEAT FLUX PREDICTIONS

Hervé Bézard, Thomas Daris*
Department of Modelling for Aerodynamics and Energetics,
French Aerospace Research Agency (ONERA)
2, av. E. Belin, BP 4025, 31055 Toulouse, France
Herve Bezard@onecert.fr, thomas.daris@snecma.fr

ABSTRACT

A new kg — kg Ly two-equation turbulence model for heat
flux predictions is described. This model is associated to
a new k — kL two-equation turbulence model for Reynolds
stress predictions, which forms a four-equation turbulence
model. The method used to analyse existing four-equation
models or to obtain a new model is presented. The model
is expressed in terms of a generic k — ¢ / kg — ¢g model
where ¢ = k%? and ¢y = koPepd can represent any type
of turbulence scales. The transport equations include all
diffusion and cross-diffusion terms. Relations on the model
constants are derived to force the model to respect some
basic physical features. It will be shown why existing models
fail to reproduce the characteristics of heated APG boundary
layer flows and how to build a new model that fulfils all
requirements. Some applications of the new k — kL / kg —
kg Lg model are presented.

INTRODUCTION

Turbulent heat transfer can be characterised by the tur-
bulent Prandtl number defined as Pr; = vz /ot where vy is
the eddy viscosity and a; is the thermal diffusivity. In most
of Reynolds-averaged Navier-Stokes (RANS) codes used in
the industry the thermal diffusivity is simply deduced from
the eddy viscosity under the assumption that the turbulent
Prandtl number is constant. However it can be seen experi-
mentally that this parameter varies inside a given flow and
between two different flows: for example it is close to 0.9 in
the logarithmic region of a boundary layer (Orlando et al.,
1974), to 0.7 in wakes (Antonia and Browne, 1986) and to
0.5 in mixing layers (Chambers et al., 1985).

An easy way to take into account the variation of the
turbulent Prandtl number is to transport two thermal turbu-
lent scales which provide the thermal diffusivity, in addition
to the two dynamic turbulent scales that provide the eddy
viscosity. These models are known as four-equation turbu-
lence models and can be quite easily implemented in RANS
codes. Most of existing four-equation turbulence models are
k —¢€ [ kg — g models where k is the turbulent kinetic en-
ergy, € its dissipation rate, kg = b_z/ 2 is half the temperature
fluctuation variance and e its dissipation rate. It is already
well-known that standard k — ¢ models are unable to give
accurate predictions of the velocity field for adverse pres-
sure gradient (APG) flows (Rodi and Scheuerer, 1986). It
will be shown that kg — ¢ models present the same defi-
ciencies from the thermal point of view and do not predict
correctly the temperature profile in heated APG boundary
layer flows. Moreover these models often predict too sharp
profiles at the outer edge of the turbulent flow, contrary to
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experiments where the velocity and the temperature profiles
approach the edge very smoothly.

The theoretical behaviour of four-equation models can
be analysed in homogeneous flows and in the different re-
gions of a ZPG or APG boundary layer following the work
of Catris and Aupoix (2000) for the dynamic part of turbu-
lence models. This paper presents the extension of this work
for the thermal turbulent scales. This approach will be used
to analyse existing k — ¢ / kg — €9 models and to develop a
fully new model which will be tested and compared to other
models in simple flow situations.

GENERIC MODEL

The idea is to deal with a generic model of the form
k — ¢ | kg — ¢pp where ¢ and ¢g are expressed as combina-
tions of k, €, kg and £¢ as ¢ = k%e® and @y = kgPeg?. ¢ and
¢g can thus represent any type of turbulence scales depend-
ing on the choice of the exponents a, b, p and ¢. Transport
equations for the turbulent scales are very general and in-
clude all diffusion and cross terms that allow the complete
equivalence between any chosen transported scale. All de-
velopments presented here will be made in the case of an
incompressible high Reynolds number flow.

The transport equations for a generic k —¢ model (Catris
and Aupoix, 2000) are:
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The eddy viscosity is classically given by: vy = Cuk?/e
with C, = 0.09. ¢ is obtained from & and ¢ through ¢ =
k%e®. The transport equations for a generic kg and ¢ model
(Daris, 2002, Daris and Bézard, 2002) are:
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The turbulent thermal diffusivity is modelled as a; =
CrkT™(279)" with m+n = 1 and C), ~ 0.11, where 7 =
k/e and Tg = kg /eg respectively represent the dynamic and
the thermal time scales. Usually the assumption is made
that 7 and 7y have the same importance in the turbulent
thermal diffusivity expression which implies that m = n =
1/2 following Nagano and Kim (1988).

CONSTRAINTS

Relations between the model constants can be obtained
by studying several basic flow behaviours considered as es-
sential, such as:

e the decay of homogeneous turbulence (Aupoix, 1987-

and Newman et al., 1981),

¢ the characteristics of the logarithmic region for a zero
pressure gradient (ZPG) and for a moderate APG
boundary layer (Huang and Bradshaw, 1995),

e the characteristics of the square-root region for a strong
APG boundary layer (Townsend, 1961),

e the independence of the turbulent flow to the outer
turbulent values prescribed in the boundary conditions
(Cazalbou et al., 1994).

By prescribing that the model has to reproduce these
elementary behaviours, analytical expressions between the
constants of the full k — ¢ / kg — ¢y model are obtained, as
it will be shown.

Decay of isotropic turbulence

In a grid-generated turbulence without any temperature
and velocity gradient, the production and diffusion terms in
equations (1) to (4) disappear and relations between Cy,,
Cy, and Cy, can be derived.

By studying the kinetic energy spectra, Aupoix (1987)
found that the constant Cy, of the destruction term of the
¢ transport equation (2) has to follow:

1_7<C¢,2—a

2
10 b ®)

In a similar way, by studying the variance spectra (for a
Prandtl number lower than one), the following relation can
be obtained:

17 3Cy, —2p
— <" LR
5 5 p + eq[

where R, represents the equilibrium value of the ratio R of

the thermal to the dynamic time scales (R = 79/7).
Newman et al. (1981) have shown that R reaches its

equilibrium value Req in a uniform way far from the grid,

3Cq, Cyp, ~ a]
— 4 6
. RTNC

which means that DR/ Dt has always the same sign, and that
different values of Req can be obtained depending on the
grid characteristics as seen in Warhaft and Lumley (1978)
experiments. Usually models give one unique value for Req,
which is not correct. Thus another condition arises that the
model has to be able to give different values of Req. Deriving
a transport equation for R, it can be shown that these two
conditions leads to:

2 5 Cy, Cy, —a
— < Regg<=~; —=+1=—~—
50 T2 g b ()

Cq, >0; Cy, =2(p+9)

The limits on Req given in (7) are in agreement with
Warhaft and Lumley (1978) experiments.

Logarithmic region
In the logarithmic region of a ZPG boundary layer, the
production of kg equilibrates the dissipation rate ¢4 and the
turbulent Prandtl number is close to 0.85. The temperature
profile has a logarithmic evolution with the wall distance

and the temperature gradient can be written as:
aT+

O - 1 ih 7t =TT (8)
ayt Kegyt T,

where the subscript T indicate wall quantities, Ty, is the wall
temperature, Tr = ® /(pCpur) is the friction temperature
and k¢, = Kko/Pr¢ = 0.48 is the thermal equivalent of the
von Karmdn constant for the velocity profile kg = 0.41. Us-
ing the transport equations of kg and ¢g, K¢, can be obtained
through the following relation:

\/a (Cch - Cm

qznfo Pr 2R

1
+Cq, — sz) = C¢6¢9 + J 9
[}

When a moderate pressure gradient is applied, the tem-
perature profile has no longer a logarithmic evolution with
the wall distance. However Huang and Bradshaw (1995)
have shown that the turbulent Prandtl number remains con-
stant and equal approximately to 0.85, an assumption which
is based upon experimental data. All equations and ex-
pressions can be developed in terms of ptyt, where pt
is the normalized pressure gradient (pt = v/puddp/dz).
The von Kérmén constant x; for the temperature profile
(8T*/8yT = 1/keyt) is expanded to the first order in
pryt:

ke = kig + ke pryt (10)

Expanding the expression of the turbulent Prandtl num-
ber to first order in p*yt leads to:

Pry= 20 [1 + <1 + ';—1 - ﬁ) p+y+] (11)

Ktg 0 Kto

where %1 is the dynamic counterpart of x¢; for the veloc-
ity profile. According to experiments x1 = 0, which means
that the assumption of a constant turbulent Prandtl number
with the pressure gradient leads to: x¢, /kt, = 1. Then inte-
grating (10), Daris (2002) has shown that the temperature
profile is:

1 : vt
TT = —In(¢) + cste with £ =

—_— 12
Kto 1+ p+y+ ( )

Using the £ variable, the temperature profile in APG
boundary layer flows takes the classical logarithmic shape.
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Figure 1: Evidence of the logarithmic law on the temper-
ature profile for an APG boundary layer (Orlando et al.,
1974).

This transformation is validated in Fig. 1 using the experi-
mental data of Orlando et al. (1974) for an APG boundary
layer. On the left part of the figure the temperature profile
is plotted classically in wall variables and does not follow the
logarithmic law. On the right part the temperature profile is
plotted using the ¢ variable and the logarithmic law appears
naturally.

Square root region

For a strong APG boundary layer flow (ptyt > 1),
Townsend (1961) has shown that the velocity profile exhibits
a square root evolution with the wall distance:

2
Ut= ;O—\/p"'y‘F—l—cst (13)

This square-root evolution can be confirmed by experi-
mental data. Using again the Huang and Bradshaw (1995)
assumption of a constant turbulent Prandtl number with
the pressure gradient, the temperature equation leads to the
following evolution with the wall distance:

2Pr; 1
Ko A /p+y+

All transport equations can be developed assuming pTyt
is much greater than unity and the theoretical behaviour
of the velocity and the temperature profiles given by the
model in the square root region can be found as relations
between the model constants. However these relations are
too complex to be presented in this paper.

Tt = + cst (14)

Turbulent edge behaviour

At the outer edge of the turbulent flow, there is a bal-
ance between convection and diffusion, which means that
the production and the destruction terms of equations (1)
to (4) have to decrease more rapidly than the other terms.
Moreover it can be shown experimentally that the temper-
ature and the turbulent quantities kg and €¢ go to the edge
values very smoothly. This behaviour can be expressed as
constraints on the model constant. The non-dimensional
flow quantities T, I~c, etc. are assumed to evolve as a power
of the non-dimensional distance to the edge A\ =1 ~y/§
(where § is a characteristic thickness) as follows:

- T — -
F=22T _per Fo = X0 _ gorcke
T, ’ T2
~ 596 eg z e (15)
&g = 0,72 =EgA®e ; ¢g = DgA“%e

where T, is the freestream temperature, U, and T, are
some reference velocity and temperature. It can be shown

1 2 e, 3 4
Figure 2: Theoretical behaviour of different thermal scales
at the edge. e = 3.

straightforwardly from the definition of ¢y that Py =
KgPEy? and €4y = Per, + Geey. Saying that the quantities
have to go to the edge smoothly (when y — & or A —» 0) is
equivalent to say that: e > 1, eky > 1 and ey, > 1. Cazal-
bou et al. (1994) have shown that these physical constraints
ensure the independence of the solution to the residual level
of kg and ¢y to be prescribed in the outer boundary condi-
tions. It should be emphasized that the constraints concern
the transported quantities, which means that kg and g4 can
have the correct behaviour whereas ¢¢ not, depending on
the choice of the scale. Indeed, from the definition of the
thermal diffusivity oy, it can be shown that:

g = (P + q)ex, +aler — 1) (16)

where e, characterises the evolution of k at the edge. As for
kg, a physical behaviour of k is obtained if er > 1. Knowing
P, ¢, ex and ey, , the behaviour of ¢4 can be obtained. Fig. 2
presents the evolution of €p, With eg, for different scales
with e = 3 which ensures a smooth evolution of k at the
edge.

The physical domain for the turbulent scales (e ef, > 1
and eg, > 1) is shaded in the figure. It can be seen that
some scales cannot behave correctly like the thermal time
scale 7 or the thermal length scale Ly as the power of their
evolution with A is negative, which means that they tend to
infinity at the edge. It has been checked that this behaviour
is independent of the value chosen for e. Thus a turbulence
model based on 7y or Ly will depend on the residual value
prescribed outside. The thermal diffusivity ag is on the limit
as its power is just equal to unity. Other scales like €g, Wy Or
ke Lg can behave well at the edge. However the powers €kg
and ey, of a given model will depend on the choice of the
different constant values and the final behaviour could be
unphysical even with favorable scales. The behaviour of the
dynamic scales is similar: the time scale 7 and the length
scale L cannot behave well at the edge, whereas ¢, w or kL
can be used and the eddy viscosity v; is on the limit.

To satisfy the balance between convection and diffusion
(and extra diffusion terms), the powers of T and kg have to
fulfill: 2er > e4,. By equating the same powers of A in the
kg and ¢y equations, the following relations can be found:

Ehy + _Sdo

kg OTkgog

2
€so [Cd)s ¢+

=er

1 17
J +e¢aekg [0459’59 + oy J ( )

94 oke

[x:2)

2
—€pgeT + Cryk, €ke =0

Finally it can be assumed that for a fully-developed tur-
bulent flow, the dynamic and thermal structures, and so the
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Table 1: Behaviour of existing k — € / kg — £¢ models in the
logarithmic region.

Constraint NK  HNT SSZ  Exp. or theory

Ko 0.42 0.42 0.385 0.41
K1/Ko 2.4 1.7 3.3 0

Kt 0.44 0.43 0.48 0.48
Ktl/'ito -1.33  -2.64 11.5 1

dynamic and the thermal boundaries, are the same (Orlando
et al., 1974). This means that the eddy viscosity and ther-
mal diffusivity are similar at the edge and that the ratio, i.e.
the turbulent Prandtl number Pry = vt/oy, tends to unity.

ANALYSIS OF EXISTING Ky — ¢4 MODELS

Famous four-equation models are the k — ¢ / kg — €¢
models of Nagano and Kim (1988), Hattori et al. (1993)
and Sommer et al. (1993), which are respectively noted NK,
HNT and SSZ. The corresponding transport equations are
simpler than the generic equations (1) to (4) as they have no
extra-diffusion terms (0rg = Tk = Okgpy = Tdghg — 00)
and no cross terms (Cygg = Cyr = Crr = Coopp = Cogke =
Crokg = 0).

With regards to homogeneous flows, only the HN'T model
satisfies all the relations (5) to (7). NK and SSZ models give
unique values for Req (respectively of 1 and 10/3) and thus
cannot predict the different values of Req of Warhaft and
Lumley (1978) experiments.

The behaviour in APG logarithmic region is summarised
in Tab. 1. As expected all models give almost ko = 0.41 and
Kto = 0.48, but none of them is able to give the correct value
of 0 for k1 and 1 for the ratio ¢, /kt,. This means none of
them is able to predict the correct behaviour in APG flows.
It comes initially from the bad behaviour of the dynamic
part of the models which are k — ¢ models. However it can
be shown that assuming a perfect behaviour of the dynamic
models (i.e. assuming k1 = 0), the behaviour of the kg — &
models is slightly improved but still stays uncorrect.

In strong APG flows, when trying to solve the equations
assuming high values of p¥yT, no square-root solution for
U and T can be found. This means that none of the models
is able to predict the square-root region of the velocity and
temperature profiles.

For the behaviour at the edge, relations (17) simplify as:

e —1

er = ———— | €ky = OkgeT ; €gg = Ocg€T (18)
€9 ~ Oke

and the constraints e > 1, ex, > 1 and e;, > 1 become:

kg <25 Oy <0g
[ 8 (19)
Oky[Oco <€k s l+0ey —0ng <eg

Only the SSZ model is able to behave physically. It pre-
dicts the following powers for the evolution of the physical
- quantities: ep = 20, ey, = 15 and e, = 30, which is far
above the limit of 1 and provide a very smooth evolution at
the edge. With SSZ model, the turbulent Prandtl number
tends to unity, as it should be.

For NK and HNT models, the diffusion constants oy,
and o, are equal, which gives a singularity in the solution at
the edge as seen in expression (18). Therefore these models
predict: e = ex, = egy = +X0 for NK model and —o0

Temperature

754 . !
' — NK

. - Rt Hl‘\IT,, L
' cseenee §8Z
o Exp -

T
00 0.05 0.1

Heat Flux

T
0.0 0.05 0.1

Turbulent Prandt! number

Figure 3: Comparison of kg — &¢ models with experiments
(Orlando et al., 1974) for a heated APG boundary layer
(pT = 0.02).

for HNT model, and the same for the limit of the turbulent
Prandtl number at the edge.

These theoretical results have been validated on the APG
heated boundary layer test case of Orlando et al. (1974).
Only the outer part of the boundary layer is computed in
this case to get rid of any near-wall model. The numerical
resolution is performed through a simple self-similar solver
where grid convergence has been checked. The tempera-
ture, heat flux and turbulent Prandtl number profiles with
the wall distance are presented in Fig. 3. All quantities are
scaled by outer variables.

All models give quite good results on the main part of
the flow except at the edge where models behaves exactly as
predicted in the theory. This is particularly striking on the
turbulent Prandtl number which goes to +oo for NK model,
to —oo for HNT model and to unity for SSZ model.

THE K-KL / Kg-KgLy MODEL

As seen previously, no existing model is able to fulfill all
prescribed constraints. Following the approach presented in
this paper, a full four-equation model has been developed.
For the dynamic part the method can be found in details in
Catris and Aupoix (2000).

The generic transport equations (1) to (4) contains lots
of degrees of freedom and some simplifications have been
done. The idea was to suppress most of the cross terms
which could provide numerical problems outside the turbu-
lent flow when all quantities are close to zero, while keeping
the constraints fulfilled. Both extra-diffusion terms (involv-
ing 0,9, and Okgg, constants) were set to zero and the
cross term involving C,r, constant was suppressed. The
same choices were made for the dynamic model.

The behaviour at the edge is given by equation (17)
which is of second order and admits two possible solutions.
It is not possible to determine which solution will be ob-

—1094—



tained. A way to get the right evolution is to force one
solution to be physical and the other not. It can be shown
(Daris, 2002) that a practical way to ensure this behaviour
on the dynamic model k — ¢ (¢ = k®?) is to have:

b
a+2b

<0 (20)

The k — kL model with L = k3/2/¢ fits this constraint
(a=5/2, b=-1). The kL scale is also interesting because it
goes naturally to zero at the wall, which greatly simplifies
the wall-boundary condition, and is linear in the logarithmic
region of a ZPG boundary layer (as k is constant and L is
linear), which should provide a relative independence to the
mesh size in this region. The unknown constants of the
k — kL model were set using the relations coming from the
dynamic constraints so that the k& — kL model used here
fulfills all constraints.

By analogy, a kg —kg Ly thermal model was chosen, where
Ly is the thermal length scale and can be expressed as Lg =
VE(ke /eg)3/? (Yoshizawa, 1988). It can be noticed that the
kgLg scale cannot be exactly represented with kgPeg? as
¢ enters in its definition. However the approach presented
here can be easily extended to this scale. As the dynamic kL
scale, the kgLg scale goes naturally to zero at the wall and
is linear in the logarithmic region of a ZPG boundary layer.
The determination of the exact transport equation of the
kg — kg Lg model can be done in a similar way as for the k —
kL model (Wolfshtein, 1969) through the study of the two-
point temperature fluctuations, which leads to suppress the
k-production term in the kg Ly transport equation (involving
constant Cp, ). Finally the set of equations solved in the case
of an incompressible high Reynolds number flow are:

Dk
oy = P—e+aiv [—gt;gradk] (21)
D¢ ¢ ( .Vt
— =~ {Cy, P~ C¢2e) +div | —grad¢
Dt k o7 (22)
+ Cgg -lg-grad¢ -grade + Cyg % grad¢ - gradk
Dk,
== . Py — g + div igradkg (23)
Dt Oy
Doy o9 £dg
Dt ok (Onfh = Canse) = Caa =

+ div

[o4 o
T —graddy | + Cyy4, ¢—t€rad¢e -gradgy  (24)
¢ 0

+ Cgyky z—;gradqﬁg - gradkg

E5/2 ¢
¢ . Ve OV o)
kg5/2 € Pg k
—koLy = = =98/2¢, 28 /2
& 650 £g €9 o A\/H ko

The model constants resulting from all constraints are
listed in Tab. 2.

APPLICATIONS

The kg — kg Ly model has been applied on Orlando et al.
(1974) experiments of a slightly heated APG boundary layer.
The dynamic field is computed with the dynamic k — kL

Table 2: k — kL / kg — kgLg model constants.

Cop Cyy Css Cor 0r ¢ Cu
1 058 -1.72 096 1.8 1.03 0.09

Cp Cay Cay Coope Cogkg ke T4a O
1 1 -042 -35 111 1 0.35 0.105

Temperature
L L

‘ -_— k,«‘k,L,

- - . o Exp.. L

T
0.0 0.05 1

Heat Flux

T
0.0 0.05 0.1

Turbulent Prandtl number

T
0.0 0.05 LAl

Figure 4: Comparison of kg — kgLg and kg — €9 models
with experiments (Orlando et al., 1974) for a heated APG
boundary layer (pt = 0.02).

model. The comparison on the non-dimensional tempera-
ture and heat flux profiles presented in Fig. 4 is fairly good.
It can be noticed the smooth shape of the profiles at the
edge as prescribed. The turbulent Prandtl number does not
behave as expected, especially at the edge where the limit
should be equal to one. However this result should be con-
sidered with caution as convergence was not fully obtained
on this variable. Numerical problems arise in the self-similar
solver, especially outside the turbulent flow where all quanti-
ties are close to zero, as no natural viscosity exists. However
some tests performed on the dynamic & — kL model with the
ONERA Navier-Stokes solver (elsA) did not exhibit such
numerical problems.

Another application of the kg — kg Lg model is presented
in Fig. 5 for the heated plane far wake experiments of An-
tonia and Browne (1986). The SSZ kg — g4 model is also
shown for comparison. The best comparison on the temper-
ature and heat flux profiles is obtained with the kg — kgLg
model. As for the APG boundary layer flow (see Fig. 4)
the profiles are very smooth at the edge of the flow, as with
SSZ model. Indeed both models respect the edge behaviour
and provide a high value of the power er of the tempera-
ture evolution. The turbulent Prandtl number given by the
kg — kg Lg model is always far from experiments due again
to a partial numerical convergence on this quantity, whereas
the SSZ model gives a good comparison with the theoretical
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Figure 5: Comparison of kg — kg Lg model and NK, HNT and
SSZ kg — g models with experiments (Antonia and Browne,
1986) for a heated plane far wake.

limit of one at the edge.

CONCLUSIONS

A novel approach has been developed to analyse existing
thermal turbulence models or to build fully new models that
are able to respect basic physical behaviours encountered in
homogeneous flows, APG boundary layer flows and at the
edge of turbulent flows. It leads to analytical constraints
that the model constants have to fulfill. Tests performed
with existing k —¢ / kg — £9 models proved that the numeri-
cal solutions exhibit the behaviours predicted by the theory.
Anew k — kL / kg — kg Lg model has been developed which
respect all prescribed behaviours. Preliminary tests in sim-
ple self-similar flows give satisfactory results, although the
prediction of the turbulent Prandtl number suffers of lack of
convergence.

Future developments will concern the implementation of
the full kK — kL / kg — kgLg in the ONERA Navier-Stokes
solver (elsA) and applications for more complex engineer-
ing flows with heat transfer. Moreover a near-wall model
is under development that gives the linear evolution of kL
and kg Lg from the wall to the logarithmic region so that the
model should not depend much on the wall grid refinement.
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